Fraud is a significant issue for insurance companies, generating much interest in machine learning solutions. Although supervised learning for insurance fraud detection has long been a research focus, unsupervised learning has rarely been studied in this context, and there remains insufficient evidence to guide the choice between these branches of machine learning for insurance fraud detection. Accordingly, this study evaluates supervised and unsupervised learning using proprietary insurance claim data. Furthermore, we conduct a field experiment in cooperation with an insurance company to investigate the performance of each approach in terms of identifying new fraudulent claims. We derive several important findings. Unsupervised learning, especially isolation forests, can successfully detect insurance fraud. Supervised learning also performs strongly, despite few labeled fraud cases. Interestingly, unsupervised and supervised learning detect new fraudulent claims based on different input information. Therefore, for implementation, we suggest understanding supervised and unsupervised methods as complements rather than substitutes.
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.