Fraud is a significant issue for insurance companies, generating much interest in machine learning solutions. Although supervised learning for insurance fraud detection has long been a research focus, unsupervised learning has rarely been studied in this context, and there remains insufficient evidence to guide the choice between these branches of machine learning for insurance fraud detection. Accordingly, this study evaluates supervised and unsupervised learning using proprietary insurance claim data. Furthermore, we conduct a field experiment in cooperation with an insurance company to investigate the performance of each approach in terms of identifying new fraudulent claims. We derive several important findings. Unsupervised learning, especially isolation forests, can successfully detect insurance fraud. Supervised learning also performs strongly, despite few labeled fraud cases. Interestingly, unsupervised and supervised learning detect new fraudulent claims based on different input information. Therefore, for implementation, we suggest understanding supervised and unsupervised methods as complements rather than substitutes.
Recent empirical evidence indicates that bond excess returns can be predicted using machine learning models. However, although the predictive power of machine learning models is intriguing, they typically lack transparency. This paper introduces the state-of-the-art explainable artificial intelligence technique SHapley Additive exPlanations (SHAP) to open the black box of these models. Our analysis identifies the key determinants that drive the predictions of bond excess returns produced by machine learning models and recognizes how these determinants relate to bond excess returns. This approach facilitates an economic interpretation of the predictions of bond excess returns made by machine learning models and contributes to a thorough understanding of the determinants of bond excess returns, which is critical for the decisions of market participants and the evaluation of economic theories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.