Purpose-This paper aims to describe a method for Internet-of-Things-devices to achieve industrial grade reliability for information transfer from wireless sensor systems to production systems using blockchain technologies. Design/methodology/approach-An increased security and reliability of submitted data within the sensor network could be achieved on an application level. Therefore, a lightweight, high-level communication protocol based on blockchain principles was designed. Findings-Blockchain mechanisms can secure the wireless communication of Internet-of-Things-devices in a lightweight and scalable manner. Originality/value-The innovation of this research is the successful application of general blockchain mechanisms to increase security of a wireless sensor system without binding to a dedicated blockchain technology.
Dieser Artikel beschreibt die Verbesserung des kreuzkorrelativen Ultraschalldurchflussmessverfahrens, sodass im Vergleich mit anderen Ultraschallmessverfahren bei deutlich geringerem Aufwand åhnliche Ergebnisse erreicht werden. Dazu wird zunåchst das Verfahren durch die komplexe Demodulation erweitert. Die Ursachen fçr die Modulationen werden dann in einer Simulation beståtigt und zur Erklårung des Messergebnisses verwendet. Auf diese Weise ist es maeglich, das physikalische Messobjekt zu bestimmen, dessen Messgraeûe mit Hilfe der Kreuzkorrelation ermittelt wird. Abschlieûend lassen sich diese Ergebnisse in Mehrpfadmessungen auf eine Tomographie als Echtzeitvisualisierung des Straemungsprofils anwenden. This paper reports improvements of ultrasonic cross-correlation flow measurements. Through these improvements results similar to those from other ultrasonic measurements are possible but with a significantly reduced technical effort. At first the ultrasonic device is extended by complex demodulation. Simulations are used to confirm and explain the results. This allows the determination of physical objects by cross-correlation. Finally the results are used for multi-path tomography as a real-time visualisation of the flow profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.