Aiming to reduce the potential in vivo hepato-and nephrotoxicity of Ag/Au bimetallic nanoparticles (NPs) stabilized by sodium dodecyl sulphate (SDS), an approach involving a simultaneous reduction of silver nitrate and tetrachlorauratic acid using tryptophan (Trp) as a reducing/stabilizing agent was applied during NP synthesis. The obtained Ag/Au/Trp NPs (5–15 nm sized) were able to form stable aggregates with an average size of 370–450 nm and were potentially less toxic than Ag/Au/SDS in relation to a mouse model system based on clinical biochemical parameters and oxidative damage product estimation. Ag/Au/Trp NPs were shown to exhibit anticancer activity in relation to a Lewis lung carcinoma model. The data generated from the present study support the fact that the use of tryptophan in NP synthesis is effective in attenuating the potential hepatotoxicity and nephrotoxicity of NPs during their in vivo application.
IntroductionSignificant losses of honey bee colonies have been observed worldwide in recent decades. Inadequate nutrition is considered to be one of the factors that can reduce honey bee resistance to abiotic and biotic environmental stresses. Accordingly, we assessed the impact of food composition on worker bee survival.MethodsBees in cages were fed six different diets, and then their survival, levels of thiobarbituric acid reactive substances and protein carbonyl groups, catalase and lysozyme activities were evaluated.Results and DiscussionAfter 17 days of feeding, the lowest mortality was observed in the group of bees that received sucrose solution with the addition of willow pollen or artificial rapeseed beebread or artificial willow beebread (diets 4–6). The highest mortality was found in bees that consumed only sucrose solution (diet 1) or the sucrose solution supplemented with a mixture of amino acids (diet 2), which can be explained by the lack of vitamins and microelements in these diets. In the group of bees that received the sucrose solution with rapeseed pollen (diet 3), mortality was intermediate. To check whether the decrease in insect survival could be related to oxidative damage, we evaluated biomarkers of oxidative stress. Consumption of pollen (diets 3 and 5) and artificial beebread (diets 4 and 6) enhances protein carbonylation in worker bees. Feeding bees artificial beebread also resulted in increase in lipid peroxidation and catalase activity, which is probably due to the presence of hydrogen peroxide in the honey contained in beebread. Remarkably, the increase in biomarkers of oxidative stress was not accompanied by adverse but positive effects on insect survival. A lack of amino acids and proteins in the diet 1 did not cause oxidative stress, but led to an increase in lysozyme activity in hemolymph, a biomarker of immune system status. In conclusion, we believe that the increase in oxidative stress biomarkers we found do not indicate oxidative damage, but rather reflect the changes in redox balance due to consumption of certain dietary options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.