Lyapunov and exponential dichotomy spectral theory is extended from ordinary differential equations (ODEs) to nonautonomous differential-algebraic equations (DAEs). By using orthogonal changes of variables, the original DAE system is transformed into appropriate condensed forms, for which concepts such as Lyapunov exponents, Bohl exponents, exponential dichotomy and spectral intervals of various kinds can be analyzed via the resulting underlying ODE. Some essential differences between the spectral theory for ODEs and that for DAEs are pointed out. It is also discussed how numerical methods for computing the spectral intervals associated with Lyapunov and Sacker-Sell (exponential dichotomy) can be extended from those methods proposed for ODEs. Some numerical examples are presented to illustrate the theoretical results.
This paper presents a survey of recent results on the robust stability analysis and the distance to instability for linear time-invariant and time-varying differential-algebraic equations (DAEs). Different stability concepts such as exponential and asymptotic stability are studied and their robustness is analyzed under general as well as restricted sets of real or complex perturbations. Formulas for the distances are presented whenever these are available and the continuity of the distances in terms of the data is discussed. Some open problems and challenges are indicated.
This paper is addressed to some questions concerning the exponential stability and its robustness measure for linear timevarying differential-algebraic systems of index 1. First, the Bohl exponent theory that is well known for ordinary differential equations is extended to differential-algebraic equations. Then, it is investigated that how the Bohl exponent and the stability radii with respect to dynamic perturbations for a differentialalgebraic system depend on the system data. The paper can be considered as a continued and complementary part to a recent paper on stability radii for time-varying differential-algebraic equations [N.H. Du, V.H. Linh, Stability radii for linear timevarying differential-algebraic equations with respect to dynamic perturbations, J. Differential Equations 230 (2006) 579-599].
Necessary and sufficient conditions for exponential stability of linear time invariant delay differential-algebraic equations (DDAEs) are presented. The robustness of this property is studied when the equation is subjected to structured perturbations and a computable formula for the structured stability radius is derived. The results are illustrated by several examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.