BackgroundMedicinal plants are widely used for the treatment of different infectious diseases. Infectious diseases caused by bacteria have a large impact on public health. This study aimed to determine the in vitro antibacterial activity of the medicinal plants traditionally used in Vietnam against the bacterial strains associated with infectious diseases.MethodsMethanol extracts of twelve Vietnamese medicinal plants were tested for their antibacterial activity against five bacterial species including Gram-positive bacteria (Bacillus cereus, Bacillus subtilis, and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) using the broth microdilution method.ResultsAll the plant extracts showed antibacterial activity, especially against Gram-positive bacteria (Bacillus cereus, Bacillus subtilis, and Staphylococcus aureus). Baeckea frutescens extract revealed a potent activity against the Gram-positive bacteria with the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 62.5 μg/ml. High activity against all the three Gram-positive bacteria was also observed for the extracts of Cratoxylum formosum ssp. pruniflorum, Pogostemon cablin, and Pedilanthus tithymaloides with MICs of 125, 125 and 250 μg/ml and MBCs of 125–250, 125–250 and 250–500 μg/ml, respectively. The extracts of C. formosum ssp. pruniflorum and P. tithymaloides showed a broad-spectrum antibacterial activity against all the bacteria tested with the MICs of 125–2,000 μg/ml.ConclusionThis study indicates clear evidence supporting the traditional use of the plants in treating infectious diseases related to bacteria. In particular, these plant species showed moderate to high antibacterial activity against the Gram-positive bacteria tested.
In the search for new antibacterial agents from natural sources, we revealed that a crude methanol extract of Sapium baccatum was highly active against Ralstonia solanacearum, a causal agent of a serious disease called bacterial wilt of tomato. The bioassay-guided fractionation of this extract resulted in the isolation of seven known active compounds, including gallic acid, methyl gallate, corilagin, tercatain, chebulagic acid, chebulinic acid, and quercetin 3-O-α-L-arabinopyranoside. Their chemical structures were determined by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. An in vitro antibacterial bioassay using a broth microdilution method revealed that, except for quercetin 3-O-α-L-arabinopyranoside (MIC = 250 μg/mL), the isolated compounds exhibited strong antibacterial activity against R. solanacearum (MIC = 26–52 μg/mL). Among the seven compounds, methyl gallate exhibited the strongest broad-spectrum activity against most of the plant pathogenic bacteria tested (MIC = 26–250 μg/mL). In the in vivo experiments, the crude extract of S. baccatum at 2000 and 1000 μg/mL reduced the development of tomato bacterial wilt by 83 and 63%, respectively, under greenhouse conditions after 14 days of infection. The results suggested that the extracts of S. baccatum or isolated tannins could be used as natural bactericides for the control of bacterial wilt of tomato.
Objectives: Infectious diseases caused by bacteria are a leading cause of death worldwide. Hence, the objectives of the study are aimed to evaluate the antibacterial activity against five human pathogenic bacteria of methanolic extracts from 66 plants collected from Vietnam. Methods: The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) of methanol extracts of 66 plant species against five bacterial strains. Results: In this study, all the plant extracts were active against at least one train with MIC values ranging from 24 to 2048 μg/mL. Twenty-five plant extracts were active against all three Gram-positive bacteria (Bacillus cereus, Bacillus subtilis, and Staphylococcus aureus). Of these, the extracts of Macaranga trichocarpa (Rchb. f. and Zoll.) Mull. Arg. (Euphorbiaceae), Calophyllum inophyllum L. (Clusiaceae) and Caryodaphnopsis baviensis (Lecomte) Airy Shaw (Lauraceae) exhibited the highest antibacterial activity (MIC =24–128 μg/mL), followed by extracts of Betula alnoides Buch.- Ham. e × . D. Don (Betulaceae), Acronychia pedunculata (L.) Miq. (Rutaceae), Croton alpinus A. Chev. ex Gagnep. (Euphorbiaceae) (MIC =64–256 μg/mL). Furthermore, the extract of Rhus chinensis Mill. (Anacardiaceae) and Annona reticulata L. (Annonaceae) exhibited potent antibacterial activity against the two Bacillus species (MIC =32–64 μg/mL). Conclusion: Results of this study reveal that plant extracts from Vietnam have highly antibacterial activity against Gram-positive bacteria. These results suggest that Vietnamese plant extracts may be a rich source of antibacterial drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.