This paper presents an analytical approach to investigate the nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened sandwich plate with functionally graded material (FGM) on elastic foundation using both of the first-order shear deformation plate theory and stress function with full motion equations (not using Volmir's assumptions). The thick sandwich plates are assumed to rest on elastic foundation and subjected to mechanical loads in thermal environment. Numerical results for dynamic response of the eccentrically stiffened thick sandwich plates are obtained by Runge–Kutta method. The results show the influences of geometrical parameters, material properties, imperfections, the elastic foundations, eccentric stiffeners, mechanical loads and temperature on the nonlinear dynamic response and nonlinear vibration of functionally graded sandwich plates. The numerical results in this paper are compared with the results reported in other publications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.