Precise and fast determination of position and orientation, which is normally achieved by distance and angle measurements, has broad applications in academia and industry. We propose a dynamic three-degree-of-freedom measurement technique based on dual-comb interferometry and a self-designed grating-corner-cube (GCC) combined sensor. Benefiting from its unique combination of diffraction and reflection characteristics, the absolute distance, pitch, and yaw of the GCC sensor can be determined simultaneously by resolving the phase spectra of the corresponding diffracted beams. We experimentally demonstrate that the method exhibits a ranging precision (Allan deviation) of 13.7 nm and an angular precision of 0.088 arcsec, alongside a 1 ms reaction time. The proposed technique is capable of precise and fast measurement of distances and two-dimensional angles over long stand-off distances. A system with such an overall performance may be potentially applied to space missions, including in tight formation-flying satellites, for spacecraft rendezvous and docking, and for antenna measurement as well as the precise manufacture of components including lithography machines and aircraft-manufacturing devices.
This paper presents a specifically designed grating-corner-cube sensor for precise roll angle measurements. Owing to the diffraction characteristics of the transmission grating and reflection characteristics of the corner cube, two spatially separated parallel beams are naturally constructed. Through differential detection of the positions of two parallel beams, we experimentally demonstrate the possibility of a precise roll angle measurement at a high refresh rate. A performance evaluation of the proposed technique indicates a stability of 0.46 arcsec over 5 min. Compared with a commercial autocollimator over a range of 500 arcsec, the residuals are maintained within ±2 arcsec with a standard deviation of 1.37 arcsec. Furthermore, a resolution of 0.8 arcsec can be achieved using the proposed method. The developed compact roll angle sensor has potential applications in academic and industrial fields.
We present a dynamic angle measurement method based on dual-comb interferometry that can reach a precision of 0.08 arc-second with 1 kHz response speed. This method can also be applied at long stand-off distances.
We analyzed the interference wavefront aberration in a single collimating lens based dual-beam exposure system. A linear relationship between the aberration and pinholes’ position was obtained and a 0.03λ-aberration in 65mm×65mm area was achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.