A crucial aspect in boundary-coupled problems, such as fluid-structure interaction, pertains to the evaluation of fluxes. In boundary-coupled problems, the flux evaluation appears implicitly in the formulation and consequently, improper flux evaluation can lead to instability. Finite-element approximations of primal and dual problems corresponding to improper formulations can therefore be nonconvergent or display suboptimal convergence rates. In this paper, we consider the main aspects of flux evaluation in finite-element approximations of boundary-coupled problems. Based on a model problem, we consider various formulations and illustrate the implications for corresponding primal and dual problems. In addition, we discuss the extension to free-boundary problems, fluid-structure interaction, and electro-osmosis applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.