Biodiversity conservation becoming increasingly urgent. It is important to find mechanisms of competitive coexistence of species with different fitness in especially difficult circumstanceson one limiting resource, in isolated stable uniform habitat, without any trade-offs and cooperative interactions. Here we show a mechanism of competitive coexistence based on a soliton-like behaviour of population waves. We have modelled it by the logical axiomatic deterministic individual-based cellular automata method. Our mechanistic models of population and ecosystem dynamics are of white-box type and so they provide direct insight into mechanisms under study. The mechanism provides indefinite coexistence of two, three and four competing species. This mechanism violates the known formulations of the competitive exclusion principle. As a consequence, we have proposed a fully mechanistic and most stringent formulation of the principle.
The paradox of biological diversity is the key problem of theoretical ecology. The paradox consists in the contradiction between the competitive exclusion principle and the observed biodiversity. The principle is important as the basis for ecological theory. On a relatively simple model we show a mechanism of indefinite coexistence of complete competitors which violates the known formulations of the competitive exclusion principle. This mechanism is based on timely recovery of limiting resources and their spatio-temporal allocation between competitors. Because of limitations of the black-box modeling there was a problem to formulate the exclusion principle correctly. Our white-box multiscale model of two-species competition is based on logical deterministic individual-based cellular automata. This approach provides an automatic deductive inference on the basis of a system of axioms, and gives a direct insight into mechanisms of the studied system. It is one of the most promising methods of artificial intelligence. We reformulate and generalize the competitive exclusion principle and explain why this formulation provides a solution of the biodiversity paradox. In addition, we propose a principle of competitive coexistence.
Complex systems may be mechanistically modelled by white-box modeling with using logical deterministic individual-based cellular automata. Mathematical models of complex systems are of three types: black-box (phenomenological), white-box (mechanistic, based on the first principles) and grey-box (mixtures of phenomenological and mechanistic models). Most basic ecological models are of black-box type, including Malthusian, Verhulst, Lotka–Volterra models. In black-box models, the individual-based (mechanistic) mechanisms of population dynamics remain hidden. Here we mechanistically model the S-shaped and double S-shaped population growth of vegetatively propagated rhizomatous lawn grasses. Using purely logical deterministic individual-based cellular automata we create a white-box model. From a general physical standpoint, the vegetative propagation of plants is an analogue of excitation propagation in excitable media. Using the Monte Carlo method, we investigate a role of different initial positioning of an individual in the habitat. We have investigated mechanisms of the single-species population growth limited by habitat size, intraspecific competition, regeneration time and fecundity of individuals in two types of boundary conditions and at two types of fecundity. Besides that, we have compared the S-shaped and J-shaped population growth. We consider this white-box modeling approach as a method of artificial intelligence which works as automatic hyper-logical inference from the first principles of the studied subject. This approach is perspective for direct mechanistic insights into nature of any complex systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.