Estimation of the tail index parameter of a single-parameter Pareto model has wide application in actuarial and other sciences. Here we examine various estimators from the standpoint of two competing criteria: efficiency and robustness against upper outliers. With the maximum likelihood estimator (MLE) being efficient but nonrobust, we desire alternative estimators that retain a relatively high degree of efficiency while also being adequately robust. A new generalized median type estimator is introduced and compared with the MLE and several well-established estimators associated with the methods of moments, trimming, least squares, quantiles, and percentile matching. The method of moments and least squares estimators are found to be relatively deficient with respect to both criteria and should become disfavored, while the trimmed mean and generalized median estimators tend to dominate the other competitors. The generalized median type performs best overall. These findings provide a basis for revision and updating of prevailing viewpoints. Other topics discussed are applications to robust estimation of upper quantiles, tail probabilities, and actuarial quantities, such as stop-loss and excess-of-loss reinsurance premiums that arise concerning solvency of portfolios. Robust parametric methods are compared with empirical nonparametric methods, which are typically nonrobust.
Several recent papers treated robust and efficient estimation of tail index parameters for (equivalent) Pareto and truncated exponential models, for large and small samples. New robust estimators of "generalized median" (GM) and "trimmed mean" (T) type were introduced and shown to provide more favorable trade-offs between efficiency and robustness than several well-established estimators, including those corresponding to methods of maximum likelihood, quantiles, and percentile matching. Here we investigate performance of the above mentioned estimators on real data and establish -via the use of goodness-of-fit measures -that favorable theoretical properties of the GM and T type estimators translate into an excellent practical performance. Further, we arrive at guidelines for Pareto model diagnostics, testing, and selection of particular robust estimators in practice. Model fits provided by the estimators are ranked and compared on the basis of Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling statistics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.