Monitoring of continuous blood pressure and cardiac output is important to prevent hypoperfusion and to guide fluid administration, but only few patients receive such monitoring due to the invasive nature of most of the methods presently available. Noninvasive blood pressure can be determined continuously using finger cuff technology and cardiac output is easily obtained using a pulse contour method. In this way completely noninvasive continuous blood pressure and cardiac output are available for clinical use in all patients that would otherwise not be monitored. Developments and state of art in hemodynamic monitoring are reviewed here, with a focus on noninvasive continuous hemodynamic monitoring form the finger.
A computer model is used to calculate the optimum geometry of an epidural electrode, consisting of a longitudinal contact array, for spinal cord stimulation in the management of chronic, intractable pain. 3D models of the spinal area are used for the computation of stimulation induced fields, and a cable model of myelinated nerve fibre is used for the calculation of the threshold stimulus to excite large dorsal column and dorsal root fibres. The criteria for the geometry of the longitudinal contact array are: a low threshold for the stimulation of dorsal column fibres compared with dorsal root fibres; and a low stimulation voltage (and current). For both percutaneous and laminectomy electrodes, the contact length should be approximately 1.5 mm, and the optimum contact separation, as determined by the computer model, is 2-2.5 mm. The contacts for a laminectomy electrode should be approximately 4 mm wide. This electrode geometry is applicable to all spinal levels where the dorsal columns can be stimulated (C1-2 down to L1). The stimulating electrode should preferably be used as a tripole with one (central) cathode.
Calculation of the response of human myelinated sensory nerve fibres to spinal cord stimulation initiated the development of a fibre model based on electrophysiological and morphometric data for human sensory nerve fibres. The model encompasses a mathematical description of the kinetics of the nodal membrane, and a non-linear fibre geometry. Fine tuning of only a few, not well-established parameters was performed by fitting the shape of a propagating action potential and its diameter-dependent propagation velocity. The quantitative behaviour of this model corresponds better to experimentally determined human fibre properties than other mammalian, nonhuman models do. Typical characteristics, such as the shape of the action potential, the propagation velocity and the strength-duration behaviour show a good fit with experimental data. The introduced diameter-dependent parameters did not result in a noticeable diameter dependency of action potential duration and refractory period. The presented model provides an improved tool to analyse the electrical behaviour of human myelinated sensory nerve fibres.
The relative positions of cathodes and anodes and their distance from the spinal cord are the major determinants of dorsal column/dorsal root activation and paresthesia distribution. The large interpatient variability of the intraspinal geometry is the main cause of differences in paresthesia coverage among patients having optimally placed electrode(s). Changes of paresthesia coverage over time are more probable when multiple electrodes are used.
Page 233 Last sentence before '4.2 Implications for SCS modelling': "The results show that the behaviour of the new model for human myelinated sensory nerve fibres corresponds substantially better with the properties measured for this type of human nerve fibre than other fibre models do.".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.