Please cite this article as: Schöbel, M., Altendorfer, W., Degischer, H.P., Vaucher, S., Buslaps, T., Di Michiel, M., Hofmann, M., Internal stresses and voids in SiC particle reinforced aluminum composites for heat sink applications, Composites Science and Technology (2011), doi: 10.1016/j.compscitech.2011 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. of 19Internal stresses and voids in SiC particle reinforced aluminum composites for heat sink applications of 19 AbstractMetal matrix composites (MMC) are being developed for power electronic IGBT modules, where the heat generated by the high power densities has to be dissipated from the chips into a heat sink. As a means of increasing long term stability a base plate material is needed with a good thermal conductivity (TC) combined with a low coefficient of thermal expansion (CTE) matching the ceramic insulator. SiC particle reinforced aluminum (AlSiC) offers the high TC of a metal with the low CTE of a ceramic. Internal stresses are generated at the matrix-particle interfaces due to the CTE mismatch between the constituents of the MMC during changing temperatures. Neutron and synchrotron diffraction was performed to evaluate the micro stresses during thermal cycling. The changes in void volume fraction, caused by plastic matrix deformation, are visualized by synchrotron tomography. The silicon content in the matrix connecting the particles to a network of hybrid reinforcement contributes essentially to the long term stability by an interpenetrating composite architecture.
Particle reinforced metal matrix composites are developed for heat sink applications. For power electronic devices like IGBT modules (Insulated Gate Bipolar Transistor) a baseplate material with high thermal conductivity combined with a low coefficient of thermal expansion is needed. Commonly AlSiC MMC are used with a high volume content of SiC particles (~ 70 vol.%). To improve the performance of these electronic modules particle reinforced materials with a higher thermal conductivity are developed for an advanced thermal management. For this purpose highly conducting diamond particles (TC ~ 1000 W/mK) are embedded in an Al matrix. These new diamond reinforced MMC were investigated concerning their thermal fatigue mechanisms compared to the common AlSiC MMC. Differences in reinforcement architecture and their effects on thermal fatigue damage were studied by in situ synchrotron tomography during thermal cycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.