Aims. This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI) that was launched onboard ESA's Herschel Space Observatory in May 2009. Methods. The instrument is a set of 7 heterodyne receivers that are electronically tuneable, covering 480−1250 GHz with SIS mixers and the 1410−1910 GHz range with hot electron bolometer (HEB) mixers. The local oscillator (LO) subsystem comprises a Ka-band synthesizer followed by 14 chains of frequency multipliers and 2 chains for each frequency band. A pair of auto-correlators and a pair of acousto-optical spectrometers process the two IF signals from the dual-polarization, single-pixel front-ends to provide instantaneous frequency coverage of 2 × 4 GHz, with a set of resolutions (125 kHz to 1 MHz) that are better than 0.1 km s −1 . Results. After a successful qualification and a pre-launch TB/TV test program, the flight instrument is now in-orbit and completed successfully the commissioning and performance verification phase. The in-orbit performance of the receivers matches the pre-launch sensitivities. We also report on the in-orbit performance of the receivers and some first results of HIFI's operations.
We report observations of the reactive molecular ions OH + , H 2 O + , and H 3 O + towards Orion KL with Herschel/HIFI. All three N = 1−0 finestructure transitions of OH + at 909, 971, and 1033 GHz and both fine-structure components of the doublet ortho-H 2 O + 1 11 −0 00 transition at 1115 and 1139 GHz were detected; an upper limit was obtained for H 3 O + . OH + and H 2 O + are observed purely in absorption, showing a narrow component at the source velocity of 9 km s −1 , and a broad blueshifted absorption similar to that reported recently for HF and para-H 18 2 O, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH + and H 2 O + for the 9 km s −1 component of 9±3×10 12 cm −2 and 7± 2× 10 12 cm −2 , and those in the outflow of 1.9± 0.7× 10 13 cm −2 and 1.0± 0.3× 10 13 cm −2 . Upper limits of 2.4× 10 12 cm −2 and 8.7× 10 12 cm −2 were derived for the column densities of ortho and para-H 3 O + from transitions near 985 and 1657 GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. The comparatively low column densities may be explained by a higher gas density despite the assumption of a very high ionization rate.
Aims. To investigate the accretion and feedback processes in massive star formation, we analyze the shapes of emission lines from hot molecular cores, whose asymmetries trace infall and expansion motions. Methods. The high-mass star forming region SgrB2(M) was observed with Herschel/HIFI (HEXOS key project) in various lines of HCN and its isotopologues, complemented by APEX data. The observations are compared to spherically symmetric, centrally heated models with density power-law gradient and different velocity fields (infall or infall+expansion), using the radiative transfer code RATRAN. Results. The HCN line profiles are asymmetric, with the emission peak shifting from blue to red with increasing J and decreasing line opacity (HCN to H 13 CN). This is most evident in the HCN 12-11 line at 1062 GHz. These line shapes are reproduced by a model whose velocity field changes from infall in the outer part to expansion in the inner part. Conclusions. The qualitative reproduction of the HCN lines suggests that infall dominates in the colder, outer regions, but expansion dominates in the warmer, inner regions. We are thus witnessing the onset of feedback in massive star formation, starting to reverse the infall and finally disrupting the whole molecular cloud. To obtain our result, the THz lines uniquely covered by HIFI were critically important.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.