The effect of an optic flow pattern on human locomotion was studied in subjects walking on a self-driven treadmill. During walking an optic flow pattern was presented, which gave subjects the illusion of walking in a tunnel. Visual stimulation was achieved by a closed-loop system in which optic flow and treadmill velocity were automatically adjusted to the intended walking velocity (WV). Subjects were instructed to keep their WV constant. The presented optic flow velocity was sinusoidally varied relative to the WV with a cycle period of 2 min. The independent variable was the relative optic flow (rOF), ranging from -1, i.e., forward flow of equal velocity as the WV, and 3, i.e., backward flow 3 times faster than WV. All subjects were affected by rOF in a similar way. The results showed, firstly, an increase in stride-cycle variability that suggests a larger instability of the walking pattern than in treadmill walking without optic flow; and, secondly, a significant modulating effect of rOF on the self-chosen WV. Backward flow resulted in a decrease, whereas forward flow induced an increase of WV. Within the analyzed range, a linear relationship was found between rOF and WV. Thirdly, WV-related modulations in stride length (SL) and stride frequency (SF) were different from normal walking: whereas in the latter a change in WV is characterized by a stable linear relationship between SL and SF (i.e., an approximately constant SL to SF ratio), optic flow-induced changes in WV are closely related to a modulation of SL (i.e., a change of SL-SF ratio). Fourthly, this effect of rOF diminished by about 45% over the entire walking distance of 800 m. The results suggest that the adjustment of WV is the result of a summation of visual and leg-proprioceptive velocity informations. Visual information about ego-motion leads to an unintentional modulation of WV by affecting specifically the relationship between SL and SF. It is hypothesized that the space-related parameter (SL) is influenced by visually perceived motion information, whereas the temporal parameter (SF) remains stable. The adaptation over the entire walking distance suggests that a shift from visual to leg-proprioceptive control takes place.
SUMMARY1. Electromyogram (e.m.g.) responses of lower leg muscles, and corresponding movements were studied following a perturbation of the limb during walking, produced by either (a) a randomly timed, short acceleration or decelerating impulse applied to the treadmill, or (b) a unilateral triceps surae contraction induced by tibial nerve stimulation.2. Bilateral e.m.g. responses following the perturbation were specific for the mode ofperturbation and depended on the phase of the gait cycle in which the perturbation occurred. Treadmill deceleration evoked a bilateral tibialis anterior activation; acceleration evoked an ipsilateral gastrocnemius and contralateral tibialis anterior activation (latency in either condition and on both sides was 65-75 ms, duration about 150 ms).3. Tibial nerve stimulation at the beginning of a stance phase, was followed by an ipsilateral tibialis anterior activation; during the swing phase it was followed by an ipsilateral tibialis anterior and contralateral gastrocnemius activation (latency about 90 ms, duration about 100 ms). These patterns differed from the response seen after a unilateral displacement during static standing, which evoked a bilateral tibialis anterior activation.4. These early responses were in most cases followed by late ipsilateral responses, but the e.m.g. pattern of the next step cycle was usually unchanged, or affected only at its onset.5. The e.m.g. responses were unaltered by ischaemic nerve blockade of group I afferents, by training effects or by pre-warning of the onset of perturbation (randomly or self-induced).6. Despite the different e.m.g. responses following a perturbation during gait, the same basic functional mechanism was obviously at work: the early ipsilateral response achieved a repositioning of the displaced foot and leg, while the early contralateral and late ipsilateral responses provided compensation for body displacement.7. It is suggested that the e.m.g. responses may be mediated predominantly by peripheral information from group II and group III afferents, which modulate the basic motor pattern of spinal interneuronal circuits underlying the respective motor task.
1. Electromyographic (EMG) responses were recorded in both legs, along with corresponding joint movements, after uni- and bilateral perturbations during stance on a treadmill with split belts. Displacements were directed forward, backward, or in opposing directions. They were induced by randomly timed ramp impulses at one of four different rates of treadmill acceleration. 2. Unilateral perturbations directed backward were followed by a bilateral gastrocnemius-EMG response, forward-directed perturbations by a bilateral tibialis anterior-EMG response. The amplitude of these responses was dependent on the rate of treadmill acceleration. Relative to the response of the displaced leg, the amplitude of the EMG response on the nondisplaced side was smaller when a gastrocnemius EMG response was induced, and about equal when the tibialis anterior muscle was activated. The onset latencies were shorter on the displaced side (displaced leg 75-96 ms, non-displaced leg 93-112 ms). 3. Bilateral perturbations in one direction were followed by larger EMG responses in both legs (in the gastrocnemius for backward-directed impulses, in the tibialis anterior for forward-directed impulses). For a given acceleration rate, their amplitude was about equal to the sum of the EMG amplitude of the displaced leg and that of the nondisplaced leg obtained during unilateral displacement. The inverse result was obtained when the legs were simultaneously displaced in opposite directions: EMG responses in both legs were significantly smaller than those obtained after unilateral displacement. 4. It is concluded that a unilateral displacement evokes reflex EMG responses in the synergistic muscles of both legs, which are graded according to the size of the proprioceptive input from the primarily displaced joint. During bilateral displacements, the activity induced by the respective contralateral leg is linearly summed or subtracted, depending on whether the legs are displaced in the same or in opposite directions. In view of the short latencies of these bilateral responses, it would seem that they are mediated by a spinal mechanism. 5. Distinct differences in the behavior of the antagonistic leg muscles were observed: 1) the coactivation of the contralateral leg muscle was significantly smaller when the gastrocnemius was stretched unilaterally, whereas it was about equal for the tibialis anterior; and 2) the gastrocnemius EMG responses were closely correlated with the displacement velocity, whereas the tibialis anterior response was more closely correlated with acceleration, i.e., the tibialis anterior response was more dynamic in nature.(ABSTRACT TRUNCATED AT 400 WORDS)
Split-belt locomotion (i.e., walking with unequal leg speeds) requires a rapid adaptation of biomechanical parameters and therefore of leg muscle electromyographic (EMG) activity. This adaptational process during the first strides of asymmetric gait as well as learning effects induced by repetition were studied in 11 healthy volunteers. Subjects were switched from slow (0.5 m/s) symmetric gait to split-belt locomotion with speeds of 0.5 m/s and 1.5 m/s, respectively. All subjects were observed to adapt in a similar way: (1) during the first trial, adaptation required about 12-15 strides. This was achieved by an increase in stride cycle duration, i.e., an increase in swing duration on the fast side and an increase in support duration on the slow side. (2) Adaptation of leg extensor and flexor EMG activity paralleled the changes of biomechanical parameters. During the first strides, muscle activity was enhanced with no increase in coactivity of antagonistic leg muscles. (3) A motor learning effect was seen when the same paradigm was repeated a few minutes later--interrupted by symmetric locomotion--as adaptation to the split-belt speeds was achieved within 1-3 strides. (4) This short-time learning effect did not occur in the "mirror" condition when the slow and fast sides were inverted. In this case adaptation again required 12-15 strides. A close link between central and proprioceptive mechanisms of interlimb coordination is suggested to underlie the adaptational processes during split-belt conditions. It can be assumed that, as in quadrupedal locomotion of the cat, human bipedal locomotion involves separate locomotor generators to provide the flexibility demanded. The present results suggest that side-specific proprioceptive information regarding the dynamics of the movement is necessary to adjust the centrally generated locomotor activity for both legs to the actual needs for controlled locomotion. Although the required pattern is quickly learned, this learning effect cannot be transferred to the contralateral side.
The fundamental disturbance of the parkinsonian gait is the reduction in walking velocity. This is mainly due to reduction in stride length, while cadence (steps/min) is slightly enhanced. Treatment with L-dopa increases stride length while cadence is unchanged. Chronic stimulation of the thalamus has no effect on Parkinsonian gait. The efficacy of electrical stimulation of the subthalamic nucleus (STN) on gait in advanced Parkinson's disease has been clearly demonstrated clinically. The aim of the present study was to quantify the changes in gait measures induced by STN stimulation and L-dopa and to assess possible differential or additive effects. Eight Parkinson's disease patients (mean +/- SD age 48.1 +/- 7.3 years) with chronic bilateral STN stimulation (mean duration of disease 13.3 +/- 2.4 years, mean stimulation time 15.4 +/- 10.6 months) and 12 age-matched controls were investigated. Subjects walked on a special treadmill with a closed-loop ultrasound control system that used the subject's position to adjust treadmill speed continuously for the actual walking velocity. In an appropriate crossover design, spatiotemporal gait measures and leg joint angle movements were assessed for at least 120 stride cycles in four treatment conditions: with and without stimulation and with and without a suprathreshold dose of L-dopa. With STN stimulation, there were increases of almost threefold in mean walking velocity (from 0.35 to 0.96 m/s) and stride length (from 0.34 to 0.99 m). Cadence remained constant. The range of motion of the major leg joints also increased. L-Dopa alone had a slightly weaker effect, with an increase in walking velocity to 0.94 m/s and in stride length to 0.92 m at a similar cadence. These increased values were in the range of those for healthy age-matched subjects performing the same task. The combination of both treatments further increased the mean walking velocity to 1.19 m/s and stride length to 1.20 m at an unchanged cadence. However, not all patients receiving STN stimulation improved further when they also received L-dopa. These results demonstrate that chronic bilateral STN stimulation, like treatment with L-dopa, improves walking velocity by increasing stride length without changing cadence. STN stimulation almost exclusively affects mechanisms involved in the control of spatial gait measures rather than rhythmicity. The gait measures obtained with STN stimulation alone are in the range of control subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.