Wide-field surveys for transiting planets are well suited to searching diverse stellar populations, enabling a better understanding of the link between the properties of planets and their parent stars. We report the discovery of HAT-P-69 b (TOI 625.01) and HAT-P-70 b (TOI 624.01), two new hot Jupiters around A stars from the Hungarian-made Automated Telescope Network (HATNet) survey that have also been observed by the Transiting Exoplanet Survey Satellite. HAT-P-69 b has a mass of-+ 3.58 0.58 0.58 M Jup and a radius of-+ 1.676 0.033 0.051 R Jup and resides in a prograde 4.79 day orbit. HAT-P-70 b has a radius of-+ 1.87 0.10 0.15 R Jup and a mass constraint of s <6.78 3 ()M Jup and resides in a retrograde 2.74 day orbit. We use the confirmation of these planets around relatively massive stars as an opportunity to explore the occurrence rate of hot Jupiters as a function of stellar mass. We define a sample of 47,126 main-sequence stars brighter than T mag =10 that yields 31 giant planet candidates, including 18 confirmed planets, 3 candidates, and 10 false positives. We find a net hot Jupiter occurrence rate of 0.41±0.10% within this sample, consistent with the rate measured by Kepler for FGK stars. When divided into stellar mass bins, we find the occurrence rate to be 0.71±0.31% for G stars, 0.43±0.15% for F stars, and 0.26±0.11% for A stars. Thus, at this point, we cannot discern any statistically significant trend in the occurrence of hot Jupiters with stellar mass.
The Transiting Exoplanet Survey Satellite (TESS) recently observed 18 transits of the hot Jupiter WASP-4b. The sequence of transits occurred 81.6 ± 11.7 seconds earlier than had been predicted, based on data stretching back to 2007. This is unlikely to be the result of a clock error, because TESS observations of other hot Jupiters (WASP-6b, 18b, and 46b) are compatible with a constant period, ruling out an 81.6-second offset at the 6.4σ level. The 1.3-day orbital period of WASP-4b appears to be decreasing at a rate ofṖ = −12.6 ± 1.2 milliseconds per year. The apparent period change might be caused by tidal orbital decay or apsidal precession, although both interpretations have shortcomings. The gravitational influence of a third body is another possibility, though at present there is minimal evidence for such a body. Further observations are needed to confirm and understand the timing variation.
We report the first detection of asymmetry in a supernova (SN) photosphere based on SN light echo (LE) spectra of Cas A from the different perspectives of dust concentrations on its LE ellipsoid. New LEs are reported based on difference images, and optical spectra of these LEs are analyzed and compared. After properly accounting for the effects of finite dust-filament extent and inclination, we find one field where the He I λ5876 and Hα features are blueshifted by an additional ∼4000 km s −1 relative to other spectra and to the spectra of the Type IIb SN 1993J. That same direction does not show any shift relative to other Cas A LE spectra in the Ca II near-infrared triplet feature. We compare the perspectives of the Cas A LE dust concentrations with recent three-dimensional modeling of the SN remnant (SNR) and note that the location having the blueshifted He I and Hα features is roughly in the direction of an Fe-rich outflow and in the opposite direction of the motion of the compact object at the center of the SNR. We conclude that Cas A was an intrinsically asymmetric SN. Future LE spectroscopy of this object, and of other historical SNe, will provide additional insight into the connection of explosion mechanism to SN to SNR, as well as give crucial observational evidence regarding how stars explode.
The Transiting Exoplanet Survey Satellite (TESS) is providing precise time-series photometry for most star clusters in the solar neighborhood. Using the TESS images, we have begun a Cluster Difference Imaging Photometric Survey (CDIPS), in which we are focusing both on stars that are candidate cluster members, and on stars that show indications of youth. Our aims are to discover giant transiting planets with known ages, and to provide light curves suitable for studies in stellar astrophysics. For this work, we made 159,343 light curves of candidate young stars, across 596 distinct clusters. Each light curve represents between 20 and 25 days of observations of a star brighter than G Rp = 16, with 30-minute sampling. We describe the image subtraction and time-series analysis techniques we used to create the light curves, which have noise properties that agree with theoretical expectations. We also comment on the possible utility of the light curve sample for studies of stellar rotation evolution, and binary eccentricity damping. The light curves a) , which cover about one sixth of the galactic plane, are available as a High Level Science Product at MAST:
We report the discovery by the HATSouth survey of HATS-4b, an extrasolar planet transiting a V=13.46 mag G star. HATS-4b has a period of P ≈ 2.5167 d, mass of M p ≈ 1.32 M Jup , radius of R p ≈ 1.02 R Jup and density of ρ p = 1.55 ± 0.16 g cm −3 ≈ 1.24ρ Jup . The host star has a mass of 1.00 M ⊙ , a radius of 0.92 R ⊙ and a very high metallicity [Fe/H]= 0.43 ± 0.08. HATS-4b is among the densest known planets with masses between 1-2 M J and is thus likely to have a significant content of heavy elements of the order of 75 M ⊕ . In this paper we present the data reduction, radial velocity measurement and stellar classification techniques adopted by the HATSouth survey for the CORALIE spectrograph. We also detail a technique to estimate simultaneously v sin i and macroturbulence using high resolution spectra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.