The increasing potential for accidental radiation exposure from either nuclear accidents or terrorist activities has escalated the need for radiation countermeasure development. We previously showed that a 30-day course of high-dose captopril, an ACE inhibitor, initiated 1–4 h after total body irradiation (TBI), improved Hematopoietic Acute Radiation Syndrome (H-ARS) and increased survival in mice. However, because of the time likely required for the deployment of a stockpiled radiation countermeasure to a radiation mass casualty site, there is a need for therapies that can be administered 24–48 hours after initial exposure. Using C57BL/6 mice exposed to an LD50-80/30 of 60Co TBI (7.75–7.9 Gy, 0.615 Gy/min), we show that low-dose captopril administration, initiated as late as 48 h post-TBI and continued for 14 days, significantly enhanced overall survival similarly to high-dose, rapid administration. Captopril treatment did not affect radiation-induced cell cycle arrest genes or the immediate loss of hematopoietic precursors. Reduced mortality was associated with the recovery of bone marrow cellularity and mature blood cell recovery at 21–30 days post-irradiation. Captopril reduced radiation-induced cytokines EPO, G-CSF, and SAA in the plasma. Finally, delayed captopril administration mitigated brain micro-hemorrhage at 21 days post-irradiation. These data indicate that low dose captopril administered as late as 48 h post-TBI for only two weeks improves survival that is associated with hematopoietic recovery and reduced inflammatory response. These data suggest that captopril may be an ideal countermeasure to mitigate H-ARS following accidental radiation exposure.
Exposure to high-dose total body irradiation (TBI) can result in hematopoietic acute radiation syndrome (H-ARS), characterized by leukopenia, anemia, and coagulopathy. Death from H-ARS occurs from hematopoietic insufficiency and opportunistic infections. Following radiation exposure, red blood cells (RBCs) undergo hemolysis from radiation-induced hemoglobin denaturation, causing the release of iron. Free iron can have multiple detrimental biological effects, including suppression of hematopoiesis. We investigated the impact of radiation-induced iron release on the bone marrow following TBI and the potential impact of the ACE inhibitor captopril, which improves survival from H-ARS. C57BL/6J mice were exposed to 7.9 Gy, 60 Co irradiation, 0.6 Gy/min (LD 70−90/30 ). RBCs and reticulocytes were significantly reduced within 7 days of TBI, with the RBC nadir at 14−21 days. Iron accumulation in the bone marrow correlated with the time course of RBC hemolysis, with an »10-fold increase in bone marrow iron at 14−21 days post-irradiation, primarily within the cytoplasm of macrophages. Iron accumulation in the bone marrow was associated with increased expression of genes for iron binding and transport proteins, including transferrin, transferrin receptor 1, ferroportin, and integrin aMb2. Expression of the gene encoding Nrf2, a transcription factor activated by oxidative stress, also increased at 21 days post-irradiation. Captopril did not alter iron accumulation in the bone marrow or expression of iron storage genes, but did suppress Nrf2 expression. Our study suggests that following TBI, iron is deposited in tissues not normally associated with iron storage, which may be a secondary mechanism of radiation-induced tissue injury. Published by Elsevier Inc. on behalf of ISEH -Society for Hematology and Stem Cells. This is an open access article under the CC BY-NC-ND license.
Total body irradiation (TBI) can result in death associated with hematopoietic insufficiency. Although radiation causes apoptosis of white blood cells, red blood cells (RBC) undergo hemolysis due to hemoglobin denaturation. RBC lysis post-irradiation results in the release of iron into the plasma, producing a secondary toxic event. We investigated radiation-induced iron in the spleens of mice following TBI and the effects of the radiation mitigator captopril. RBC and hematocrit were reduced ~7 days (nadir ~14 days) post-TBI. Prussian blue staining revealed increased splenic Fe3+ and altered expression of iron binding and transport proteins, determined by qPCR, western blotting, and immunohistochemistry. Captopril did not affect iron deposition in the spleen or modulate iron-binding proteins. Caspase-3 was activated after ~7–14 days, indicating apoptosis had occurred. We also identified markers of iron-dependent apoptosis known as ferroptosis. The p21/Waf1 accelerated senescence marker was not upregulated. Macrophage inflammation is an effect of TBI. We investigated the effects of radiation and Fe3+ on the J774A.1 murine macrophage cell line. Radiation induced p21/Waf1 and ferritin, but not caspase-3, after ~24 h. Radiation ± iron upregulated several markers of pro-inflammatory M1 polarization; radiation with iron also upregulated a marker of anti-inflammatory M2 polarization. Our data indicate that following TBI, iron accumulates in the spleen where it regulates iron-binding proteins and triggers apoptosis and possible ferroptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.