Nb+Al) codoped rutile TiO 2 ceramics with nominal composition Ti 4+ 0.995 Nb 5+ 0.005y Al 3+ 0.005z O 2 , z = (4−5y)/3 and y = 0.4, 0.5, 0.6, 0.7, and Ti 4+ 0.90 Nb 5+ 0.05 Al 3+ 0.05 O 2 have been synthesized. The resultant samples in ceramic pellet form exhibit a colossal dielectric permittivity (>∼10 4 ) with an acceptably low dielectric loss (∼10 −1 ) after optimization of the processing conditions. It is found that a conventional surface barrier layer capacitor (SBLC) effect, while it contributes significantly to the observed colossal permittivity, is not the dominant effect. Rather, there exists a subtle chemical compositional gradient inward from the pellet surface, involving the concentration of Ti 3+ cations gradually increasing from zero at the surface without the introduction of any charge compensating oxygen vacancies. Instead, well-defined G r ± 1 / 3 [011]* satellite reflections with the modulation wave-vector q = 1 / 3 [011] r * and sharp diffuse streaking running along the G r ± ε[011]* direction from electron diffraction suggest that the induced additional metal ions appear to be digested by a locally intergrown, intermediate, metal ion rich structure. This gradient in local chemical composition exists on a scale up to ∼ submillimeters, significantly affecting the overall dielectric properties. This work suggests that such a controllable surface compositional gradient is an alternative method to tailor the desired dielectric performance.
We present the results of electrically-detected magnetic resonance (EDMR) experiments on ion-implanted Si:P nanostructures at 5 K, consisting of high-dose implanted metallic leads with a square gap, in which Phosphorus is implanted at a non-metallic dose corresponding to 10 17 cm −3 . By restricting this secondary implant to a 100 nm × 100 nm region, the EDMR signal from less than 100 donors is detected. This technique provides a pathway to the study of single donor spins in semiconductors, which is relevant to a number of proposals for quantum information processing. The ability to spectroscopically study the spin properties and interactions of a small number of donors in semiconductors has many applications such as the storage of classical information in nuclear or electronic spins, 1 and is relevant to a number of proposals 2,3 related to quantum information processing (QIP). In particular, the construction of QIP hardware utilizing Si:P has been discussed by Kane 4 and Hollenberg. 5 In this context, the ultimate task is the detection of the electron or nuclear spin state of single P donors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.