Identified pi(+/-), K(+/-), p, and (-)p transverse momentum spectra at midrapidity in sqrt[s(NN)] = 130 GeV Au+Au collisions were measured by the PHENIX experiment at RHIC as a function of collision centrality. Average transverse momenta increase with the number of participating nucleons in a similar way for all particle species. Within errors, all midrapidity particle yields per participant are found to be increasing with the number of participating nucleons. There is an indication that K(+/-), p, and (-)p yields per participant increase faster than the pi(+/-) yields. In central collisions at high transverse momenta (p(T) > or =2 GeV/c), (-)p and p yields are comparable to the pi(+/-) yields.
The PHENIX detector is designed to perform a broad study of A-A, p-A, and p-p collisions to investigate nuclear matter under extreme conditions. A wide variety of probes, sensitive to all timescales, are used to study systematic variations with species and energy as well as to measure the spin structure of the nucleon. Designing for the needs of the heavy-ion and polarized-proton programs has produced a detector with unparalleled capabilities. PHENIX measures electron and muon pairs, photons, and hadrons with excellent energy and momentum resolution. The detector consists of a large number of subsystems that are discussed in other papers in this volume. The overall design parameters of the detector are presented. The PHENIX detector is designed to perform a broad study of A-A, p-A, and p-p collisions to investigate nuclear matter under extreme conditions. A wide variety of probes, sensitive to all timescales, are used to study systematic variations with species and energy as well as to measure the spin structure of the nucleon. Designing for the needs of the heavy-ion and polarized-proton programs has produced a detector with unparalleled capabilities. PHENIX measures electron and muon pairs, photons, and hadrons with excellent energy and momentum resolution. The detector consists of a large number of subsystems that are discussed in other papers in this volume. The overall design parameters of the detector are presented.
Disciplines
Engineering Physics | Physics
Comments
This is a manuscript of an article from Nuclear Instruments and Methods in Physics Research
Neutrinoless double-beta (0νββ) decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for 0νββ decay of 130 Te using an array of 988 TeO 2 crystal bolometers operated at 10 mK. The detector will contain 206 kg of 130 Te and have an average energy resolution of 5 keV; the projected 0νββ decay half-life sensitivity after five years of live time is 1.6 × 10 26 y at 1σ (9.5 × 10 25 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40-100 meV (50-130 meV). In this paper we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.