Nuclear factor-kappa B, a ubiquitous transcription factor involved in inflammatory and immune responses, is inappropriately activated in several immuno-related diseases, such as allograft rejection, or bronchial asthma. As nuclear factor-kappa B activity is regulated by inhibitor of kappa B (I kappa B), the gene encoding I kappa B-alpha was disrupted in mice to observe the in vivo effects of hyperactivation of nuclear factor-kappa B. I kappa B-alpha-/- mice have constitutive nuclear factor-kappa B activity, severe skin disease, and neonatal lethality. To determine the role of I kappa B-alpha deficient immunocytes in the pathogenesis of the skin disease in adult mice, we utilized the RAG2-deficient blastocyst complementation system to generate RAG2-/-, I kappa B-alpha-/- chimeras. These animals display a psoriasiform dermatitis characterized by hyperplastic epidermal keratinocytes and dermal infiltration of immunocytes, including lymphocytes. Skin grafts transferred from diseased chimeras to recipient nude mice produce hyperproliferative psoriasiform epidermal keratinocytes in response to stimulation. Furthermore, adoptive transfer of lymph node cells from diseased chimeras to RAG2-/- recipient mice recapitulates the disease. Taken together, these characterizations provide evidence to suggest that constitutive activation of nuclear factor-kappa B, due to deficiency in I kappa B-alpha, can invoke severe psoriasiform dermatitis in adult mice. J Invest Dermatol 115:1124-1133 2000
Neonatal mice deficient in IkappaB-alpha, an inhibitor of the ubiquitous transcription factor NF-kappaB, develop severe and widespread dermatitis shortly after birth. In humans, inflammatory skin disorders such as psoriasis are associated with accumulation in the skin of the unusual arachidonic acid metabolite 12R-hydroxyeicosatetraenoic acid (12R-HETE), a product of the enzyme 12R-lipoxygenase. To examine the etiology of the murine IkappaB-alpha-deficient skin phenotype, we investigated the expression of lipoxygenases and the metabolism of exogenous arachidonic acid in the skin. In the IkappaB-alpha-deficient animals, the major lipoxygenase metabolite was 8S-HETE, formed together with a minor amount of 12S-HETE; 12R-HETE synthesis was undetectable. Skin from the wild-type littermates formed 12S-HETE as the almost exclusive lipoxygenase metabolite. Upregulation of 8S-lipoxygenase (8-LOX) in IkappaB-alpha-deficient mice was confirmed at the transcriptional and translational level using ribonuclease protection assay and western analysis. In immunohistochemical studies, increased expression of 8-LOX was detected in the stratum granulosum of the epidermis. In the stratum granulosum, 8-LOX may be involved in the terminal differentiation of keratinocytes. Although mouse 8S-lipoxygenase and human 12R-lipoxygenase are not ortholog genes, we speculate that in mouse and humans the two different enzymes may fulfill equivalent functions in the progression of inflammatory dermatoses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.