Our first in-beam PET measurements of the beta+ activation induced by proton irradiation are presented. Monoenergetic proton beams in the energy and intensity range suited for the treatment of deep-seated tumours were delivered by the synchrotron of the Gesellschaft für Schwerionenforschung Darmstadt (GSI). They were stopped in PMMA blocks placed in the centre of the field of view of the positron camera that is installed in the heavy ion tumour treatment facility at GSI. The beta+ activity signal was found to be three times larger than that produced by carbon ions at the same range and applied physical dose. The reconstructed spatial beta+ activity distributions were analysed and compared with the production of positron emitters predicted by a calculation based on experimental cross-sections and on the proton flux given by the FLUKA Monte Carlo code. The shape of the depth-activity profiles was well reproduced by the model and the correlation with the proton range and the depth-dose distributions was carefully investigated. Despite the non-trivial range determination from the beta+ activity distribution in the proton case, our experimental investigation supports the feasibility of an in situ proton therapy monitoring by means of in-beam PET, as already clinically implemented for the monitoring of carbon ion therapy at GSI Darmstadt.
HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85 % azimuthal coverage over a polar angle interval from 18• to 85• , a single electron efficiency of 50 % and a vector meson mass resolution of 2.5 %. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range. This paper describes the main features and the performance of the detector system.
For the first time, range verification based on prompt gamma imaging was applied for a clinical proton treatment. With the translation from basic physics experiments into clinical operation, the potential to improve the precision of particle therapy with this technique has increased considerably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.