Abstract-While it is quite typical to deal with attributes of different data types in the visualization of heterogeneous, multivariate datasets, most existing techniques still focus on the most usual data types such as numerical attributes or strings. In this paper we present a new approach to the interactive visual exploration and analysis of data that contains attributes which are of set type. A set-typed attribute of a data item -like one cell in a table -has a list of n ≥ 0 elements as a value. We present the set'o'gram as a visualization approach to represent data of set type and to enable interactive visual analysis. We also demonstrate how this approach is capable to help in dealing with datasets that have truly many dimensions (more than a dozen or more), especially in the context of categorical data. To illustrate the effectiveness of our approach, we present the interactive visual analysis of a CRM dataset with data from a questionnaire on the education and shopping habits of about 90000 people.
In Toponomics, the function protein pattern in cells or tissue (the toponome) is imaged and analyzed for applications in toxicology, new drug development and patient-drug-interaction. The most advanced imaging technique is robot-driven multi-parameter fluorescence microscopy. This technique is capable of co-mapping hundreds of proteins and their distribution and assembly in protein clusters across a cell or tissue sample by running cycles of fluorescence tagging with monoclonal antibodies or other affinity reagents, imaging, and bleaching in situ. The imaging results in complex multi-parameter data composed of one slice or a 3D volume per affinity reagent. Biologists are particularly interested in the localization of co-occurring proteins, the frequency of co-occurrence and the distribution of co-occurring proteins across the cell. We present an interactive visual analysis approach for the evaluation of multi-parameter fluorescence microscopy data in toponomics. Multiple, linked views facilitate the definition of features by brushing multiple dimensions. The feature specification result is linked to all views establishing a focus+context visualization in 3D. In a new attribute view, we integrate techniques from graph visualization. Each node in the graph represents an affinity reagent while each edge represents two co-occurring affinity reagent bindings. The graph visualization is enhanced by glyphs which encode specific properties of the binding. The graph view is equipped with brushing facilities. By brushing in the spatial and attribute domain, the biologist achieves a better understanding of the function protein patterns of a cell. Furthermore, an interactive table view is integrated which summarizes unique fluorescence patterns. We discuss our approach with respect to a cell probe containing lymphocytes and a prostate tissue section.
The most important resources to fulfill today's energy demands are fossil fuels, such as oil and natural gas. When exploiting hydrocarbon reservoirs, a detailed and credible model of the subsurface structures is crucial in order to minimize economic and ecological risks. Creating such a model is an inverse problem: reconstructing structures from measured reflection seismics. The major challenge here is twofold: First, the structures in highly ambiguous seismic data are interpreted in the time domain. Second, a velocity model has to be built from this interpretation to match the model to depth measurements from wells. If it is not possible to obtain a match at all positions, the interpretation has to be updated, going back to the first step. This results in a lengthy back and forth between the different steps, or in an unphysical velocity model in many cases. This paper presents a novel, integrated approach to interactively creating subsurface models from reflection seismics. It integrates the interpretation of the seismic data using an interactive horizon extraction technique based on piecewise global optimization with velocity modeling. Computing and visualizing the effects of changes to the interpretation and velocity model on the depth-converted model on the fly enables an integrated feedback loop that enables a completely new connection of the seismic data in time domain and well data in depth domain. Using a novel joint time/depth visualization, depicting side-by-side views of the original and the resulting depth-converted data, domain experts can directly fit their interpretation in time domain to spatial ground truth data. We have conducted a domain expert evaluation, which illustrates that the presented workflow enables the creation of exact subsurface models much more rapidly than previous approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.