BackgroundDespite empirical support for an increase in ecosystem productivity with species diversity in synthetic systems, there is ample evidence that this relationship is dependent on environmental characteristics, especially in structurally more complex natural systems. Empirical support for this relationship in forests is urgently needed, as these ecosystems play an important role in carbon sequestration.Methodology/Principal FindingsWe tested whether tree wood production is positively related to tree species richness while controlling for climatic factors, by analyzing 55265 forest inventory plots in 11 forest types across five European countries. On average, wood production was 24% higher in mixed than in monospecific forests. Taken alone, wood production was enhanced with increasing tree species richness in almost all forest types. In some forests, wood production was also greater with increasing numbers of tree types. Structural Equation Modeling indicated that the increase in wood production with tree species richness was largely mediated by a positive association between stand basal area and tree species richness. Mean annual temperature and mean annual precipitation affected wood production and species richness directly. However, the direction and magnitude of the influence of climatic variables on wood production and species richness was not consistent, and vary dependent on forest type.ConclusionsOur analysis is the first to find a local scale positive relationship between tree species richness and tree wood production occurring across a continent. Our results strongly support incorporating the role of biodiversity in management and policy plans for forest carbon sequestration.
Abstract• This article synthesizes and reviews the available information on the effects of forestry practices on the occurrence of biotic and abiotic hazards, as well as on stand susceptibility to these damaging agents, concentrating on mammal herbivores, pest insects, pathogenic fungi, wind and fire.• The management operations examined are site selection, site preparation, stand composition, regeneration method, cleaning and weed control, thinning and pruning, and harvesting. For each of these operations we have examined how they influence the occurrence of biotic and abiotic damaging agents, the susceptibility of European forests, and describe the ecological processes that may explain these influences.• Overall, we find that the silvicultural operations that have the largest influence on both biotic and abiotic risks to European forest stands are closely related to species composition and the structure of the overstorey. Four main processes that drive the causal relationships between stand management and susceptibility have been identified: effect on local microclimate, provision of fuel and resources to biotic and abiotic hazards, enhancement of biological control by natural enemies and changes in individual tree physiology and development.• The review demonstrates an opportunity to develop silvicultural methods that achieve forest management objectives at the same time as minimising biotic and abiotic risks. Mots-clés :sylviculture / peuplement / occurrence / sensibilité / Résumé -Influences de la sylviculture sur le risque de dégâts biotiques et abiotiques dans les peuplements forestiers.• Cette revue bibliographique s'intéresse aux effets de la sylviculture sur la sensibilité des peuplements forestiers aux principaux agents de dégâts biotiques et abiotiques que sont les mammifères herbivores, les insectes ravageurs, les champignons pathogènes, le feu et les vents forts. * Corresponding author: herve.jactel@pierroton.inra.frArticle published by EDP Sciences Ann. For. Sci. 66 (2009) 701 H. Jactel et al.• Les pratiques forestières analysées sont la sélection et la préparation des sites de reboisement, la définition de la composition en essences et le choix du matériel génétique, les méthodes de régé-nération et d'entretien, les modalités d'éclaircie et d'élagage, le mode de récolte finale. L'influence de chacune de ces opérations sur l'occurrence des agents de dégâts biotiques et abiotiques et sur la sensibilité des peuplements est examinée ainsi que les processus écologiques sous-jacents.• Les opérations sylvicoles qui se révèlent les plus déterminantes pour la sensibilité des forêts en Europe sont celles qui affectent la composition et la structure de la strate arborée. Quatre principaux processus écologiques semblent expliquer la relation entre sylviculture et sensibilité des peuplements : la modification du micro-climat, l'apport de ressources ou de combustible aux agents de dégâts, l'amélioration du contrôle biologique par les ennemis naturels et l'altération de la physiologie et du développement des arb...
Predicting climate-driven changes in plant distribution is crucial for biodiversity conservation and management under recent climate change. Climate warming is expected to induce movement of species upslope and towards higher latitudes. However, the mechanisms and physiological processes behind the altitudinal and latitudinal distribution range of a tree species are complex and depend on each tree species features and vary over ontogenetic stages. We investigated the altitudinal distribution differences between juvenile and adult individuals of seven major European tree species along elevational transects covering a wide latitudinal range from southern Spain (37°N) to northern Sweden (67°N). By comparing juvenile and adult distributions (shifts on the optimum position and the range limits) we assessed the response of species to present climate conditions in relation to previous conditions that prevailed when adults were established. Mean temperature increased by 0.86 °C on average at our sites during the last decade compared with previous 30-year period. Only one of the species studied, Abies alba, matched the expected predictions under the observed warming, with a maximum abundance of juveniles at higher altitudes than adults. Three species, Fagus sylvatica, Picea abies and Pinus sylvestris, showed an opposite pattern while for other three species, such as Quercus ilex, Acer pseudoplatanus and Q. petraea, we were no able to detect changes in distribution. These findings are in contrast with theoretical predictions and show that tree responses to climate change are complex and are obscured not only by other environmental factors but also by internal processes related to ontogeny and demography.
We describe a series of experiments on the protection of Norway spruce (Picea abies (L.) Karst.) logs and standing trees against Ips typographus L. (Coleoptera: Scolytidae). The tested protective materials were applied 1) at point sources and 2) area-covering using zeolite-based dispensers. We performed 11 terrestrial and one aerial application (using a helicopter) between 1992 and 2001. We gradually replaced polyethylene-bag verbenone dispensers by composite dispensers releasing verbenone and non-host volatiles (NHV: green leaf volatiles, trans-conophthorin, and C8-alcohols). Many experiments did not give statistically significant results, due to the low number of true replicates and the spatial heterogeneity of beetle attacks. The protection of horizontal objects like logs or lying trees with anti-attractants was not always successful. In the future, positive results can be expected with an area covering spray applied by zeolite dispensers containing mixtures of verbenone and NHV. A similar approach could probably be used in aerial spraying of anti-attractants.We have succeeded in our attempt to protect zones of standing spruce trees from I. typographus attacks. We used dispensers with a combination of verbenone and a full blend of NHV compounds. The protection is not complete, but in both 2000 and 2001, the treatment significantly decreased the probability of the insect attack on trees by 60-80 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.