Recent results obtained by applying the method of self-consistent Green's functions to nuclei and nuclear matter are reviewed. Particular attention is given to the description of experimental data obtained from the (e,e ′ p) and (e,e ′ 2N) reactions that determine one and two-nucleon removal probabilities in nuclei since the corresponding amplitudes are directly related to the imaginary parts of the single-particle and two-particle propagators. For this reason and the fact that these amplitudes can now be calculated with the inclusion of all the relevant physical processes, it is useful to explore the efficacy of the method of self-consistent Green's functions in describing these experimental data. Results for both finite nuclei and nuclear matter are discussed with particular emphasis on clarifying the role of short-range correlations in determining various experimental quantities. The important role of long-range correlations in determining the structure of lowenergy correlations is also documented. For a complete understanding of nuclear phenomena it is therefore essential to include both types of physical correlations. We demonstrate that recent experimental results for these reactions combined with the reported theoretical calculations yield a very clear understanding of the properties of all protons in the nucleus. We propose that this knowledge of the properties of constituent fermions in a correlated many-body system is a unique feature of nuclear physics.
Resolution of discrete final states in the16 O(e,e ′ pp) 14 C reaction may provide an interesting tool to discriminate between contributions from one-and two-body currents in this reaction. This is based on the observation that the 0 + ground state and first 2 + state of 14 C are reached predominantly by the removal of a 1 S0 pair from 16 O in this reaction, whereas other states mostly arise by the removal of a 3 P pair. This theoretical prediction has been supported recently by an analysis of the pair momentum distribution of the experimental data [1]. In this paper we present results of reaction calculations performed in a direct knock-out framework where final-state interaction and one-and two-body currents are included. The two-nucleon overlap integrals are obtained from a calculation of the two-proton spectral function of 16 O and include both long-range and short-range correlations. The kinematics chosen in the calculations is relevant for recent experiments at NIKHEF and Mainz. We find that the knock-out of a 3 P proton pair is largely due to the (two-body) ∆-current. The 1 S0 pair knock-out, on the other hand, is dominated by contributions from the one-body current and therefore sensitive to two-body short-range correlations. This opens up good perspectives for the study of these correlations in the 16 O(e,e ′ pp) reaction involving the lowest few states in 14 C. In particular the longitudinal structure function f00, which might be separated with super-parallel kinematics, turns out to be quite sensitive to the NN potential that is adopted in the calculations.
The influence of short-range correlations on the momentum and energy distribution of nucleons in nuclei is evaluated assuming a realistic meson-exchange potential for the nucleon-nucleon interaction. Using the Green-function approach the calculations are performed directly for the finite nucleus 16 O avoiding the local density approximation and its reference to studies of infinite nuclear matter. The nucleon-nucleon correlations induced by the short-range and tensor components of the interaction yield an enhancement of the momentum distribution at high momenta as compared to the Hartree-Fock description. These high-momentum components should be observed mainly in nucleon knockout reactions like (e, e ′ p) leaving the final nucleus in a state of high excitation energy. Our analysis also demonstrates that non-negligible contributions to the momentum distribution should be found in partial waves which are unoccupied in the simple shell-model. The treatment of correlations beyond the Brueckner-Hartree-Fock approximation also yields an improvement for the calculated ground-state properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.