I. AbstractA high performance 65 nm SOI CMOS technology is presented. Dual stress liner (DSL), embedded SiGe, and stress memorization techniques are utilized to enhance transistor speed. Advanced-low-K BEOL for this technology features 10 wiring levels with a novel K=2.75 film in selected levels. This film is a SiCOH-based dielectric optimized for stress to enable integration for enhanced performance. The resulting technology delivers pFET and nFET AC switching on-current of 735 µA/um and 1259 µA/um respectively, at an off-current of 200 nA/um (V dd =1.0 V), and 6% reduction in interconnect delay. Process yield is demonstrated on a SRAM cell with size of 0.65 µm 2 . II. Technology DescriptionThe major ground rules used in this technology are equivalent to our 65-nm-baseline technology which utilizes DSL for enhanced performance [1]. DSL is a process integration flow that combines tensile and compressive stress silicon nitride liners on nFET and pFET devices respectively, resulting in increased channel strain and performance for both. Fig. 1 shows our baseline flow with additional enhanced strain process steps. Specifically, the embedded SiGe process is implemented with epitaxial SiGe growth in cavities etched into the source/drain areas of the pFETs. The nFETs are covered with a nitride hardmask during recess etch and epitaxial growth of SiGe in the pFET areas. Photolithography is utilized to mask the nFET areas while the hardmask is etched into a spacer in the pFET areas. This spacer defines the proximity of the SiGe to the channel area and prevents SiGe growth on the pFET polysilicon gate electrode. A stress memorization technique (SMT) is implemented for the nFETs where increased tensile strain was achieved by the deposition of a stress dielectric film and subsequent thermal anneal.The remaining process flow steps are equivalent to our baseline CMOS process, except for a modified Ni silicide process that achieves improved contact and stability on SiGe. This is followed by DSL implementation in the middle-of-line (MOL) [2]. A cross-sectional TEM image of a completed device is shown in Fig. 2, also shown is an AFM image of the surface morphology of the source/drain area of the pFET demonstrating a smooth RMS roughness value of 0.11 nm. The advanced-low-K dielectric film used in the BEOL interconnect levels is based on the K=2.75 material previously discussed [3]. This film has been optimized for lower permittivity (K=2.75) and stress. Extendibility of the film into both 2x and 4x fatwire levels has been demonstrated. III. FEOL Performance ResultsA plot of the Ion-Ioff characteristics is shown in Fig. 3 along with the transistor characteristics in Fig. 4 at 1.0 V Vdd, where the threshold voltage roll-off is well-behaved down to 30 nm gate length, and sub-threshold swing is maintained at ~110 mV/dec (Fig. 5-6). pFET AC switching on-current of 735 µA/µm at off-current of 200 nA/µm with a corresponding DC on-current of 700 µA/µm was achieved. For the nFET, the AC switching on-current was 1259 µA/µm and the DC on-cur...
This work reports on a methodology for achieving high drive current and low gate delay that can be used for the 70 nm technology node. A combination of optimized device design and aggressive gate oxide scaling has been applied to fabricate transistors with saturation currents of 1080 uNum (NFET, 1171 uNum dynamic) and 490 uNum (PFET, 507 d u m dynamic) at Iof levels of 100 d u m for 1.1 volt operation. The physical gate length (Lpoly) for these devices is 39 nm. The saturation currents increase to 1180 d u m and 540 d u m at Iof levels of 300 nNum, which corresponds to gate delays of 0.61 ps and 1.25 ps for NFET and PFET, respectively. These are among the lowest CV/I values ever reported for conventional CMOS scaling. These devices also exhibit excellent high-frequency response, which makes this technology ideally suited for system-on-chip applications that require both high-frequency signal processing and high-speed digital logic. A record high NFET f,,, of 193 GHz has been demonstrated along with an fT of 178 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.