We report the quantitative characterization and analysis on the solidification of SU-8, a chemically amplified near-ultraviolet ultrathick resist, based on two-photon-absorbed (TPA) near-infrared photopolymerization. The resolution of TPA photopolymerized SU-8 voxels and lines is studied as a function of laser-pulse energy, single-shot exposure time, and scanning speed. Two-photon microstereolithography using SU-8 as the matrix material was verified by the fabrication of SU-8 photoplastic structures with subdiffraction-limit resolution. We show that the nonlinear velocity dependence of TPA photopolymerization can be used as the shutter mechanism for disruptive three-dimensional (3D) lithography. This mechanism, when combined with low numerical-aperture optics is exploited for the rapid 3D microfabrication of ultrahigh-aspect-ratio (up to 50:1) photoplastic pillars, planes, and cage structures.
We report the inherent utility of two-photon-absorption (TPA) in the fabrication of real three-dimensional (3D) structures with subdiffraction-limit resolution, based on SU-8 as the threshold polymer media. We exploit the nonlinear velocity dependence of TPA photopolymerization as the shutter mechanism for disruptive 3D lithography. We show that low numerical aperture optics can be used for the rapid microfabrication of ultrahigh-aspect ratio photoplastic pillars, planes, and cage structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.