In order to diagnose the electron cyclotron resonance (ECR) plasma, a high-efficiency collimation system has been developed at the Institute of Modern Physics, and the bremsstrahlung spectra in the range of 10 keV–300 keV were measured on a third generation superconducting ECR ion source, SECRAL-II, with a CdTe detector. Used as a comparative index of the mean energy of the high energy electron population, the spectral temperature, Ts, is derived through a linear fitting of the spectra in a semi-logarithmic representation. The influences of some main source parameters, such as the neutral gas pressure, extraction voltage, microwave power, and bias disk voltage, on the high energy electrons are systemically investigated.
The effect of B on microstructure and various properties including coefficient of thermal expansion (CTE), HV hardness, and both smooth and notch stress rupture properties of modified Thermo-Span alloy was studied. The results show that B hardly dissolves in matrix. Increasing B content constrains the formation of Laves phase and grain boundary (GB) precipitation of Laves and G phases, but promotes the formation of M(Co, Fe)NbB boride. In low B doped alloy, its intrinsic high susceptibility to intergranular cracks leads to reduced rupture life and notch sensitivity. Increasing B improves grain boundary cohesion, tying up vacancies and reducing GB diffusion, which constrains the nucleation and propagation of intergranular microcracks, prolongs the rupture life and eliminates the notch sensitivity in the new alloy. Compared with conventional Thermo-Span alloy, the B doped modified alloy shows lower CTE and improved notch sensitivity.
A high-temperature oven based on the inductive heating technology was developed successfully at the Institute of Modern Physics in 2019. This oven features a durable operation temperature of over 2000 °C inside the tantalum susceptor. By carefully designing the oven structure, the material compatibility issue at high temperature has been successfully solved, which enables the production and routine operation of refractory metal ions with SECRAL-II (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou No. 2). To further apply this type of oven to the room temperature ECR ion sources LECR4 and LECR5 (Lanzhou Electron Cyclotron Resonance ion source No. 4 and 5), a mini-inductive heating oven has been fabricated and tested in 2020. By directly evaporating calcium oxide, some high charge state calcium beams have been produced successfully, such as 52 euA of 40Ca16+, 30 euA of 40Ca17+, and 12 euA of 40Ca18+. The detailed design and testing results will be presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.