In photon beam convolution calculations where polyenergetic energy deposition kernels (EDKS) are used, the primary photon energy spectrum should be correctly accounted for in Monte Carlo generation of EDKS. This requires the probability of interaction, determined by the linear attenuation coefficient, mu, to be taken into account when primary photon interactions are forced to occur at the EDK origin. The use of primary and scattered EDKS generated with a fixed photon spectrum can give rise to an error in the dose calculation due to neglecting the effects of beam hardening with depth. The proportion of primary photon energy that is transferred to secondary electrons increases with depth of interaction, due to the increase in the ratio mu ab/mu as the beam hardens. Convolution depth-dose curves calculated using polyenergetic EDKS generated for the primary photon spectra which exist at depths of 0, 20 and 40 cm in water, show a fall-off which is too steep when compared with EGS4 Monte Carlo results. A beam hardening correction factor applied to primary and scattered 0 cm EDKS, based on the ratio of kerma to terma at each depth, gives primary, scattered and total dose in good agreement with Monte Carlo results.
Total and primary polyenergetic dose spread arrays (PDSA) have been generated for a high energy 10 MV radiotherapy photon beam using the electron gamma shower (EGS) Monte Carlo code. By considering the attenuation of fluence per energy interval, PDSA have been produced at radiological depths of 0 cm (the surface PDSA) and 40 cm (the beam hardened PDSA). By comparing primary PDSA produced at these different depths, the effect of beam hardening on the PDSA has been quantified. Calculations show that the mean electron range due to the surface primary PDSA is 6.67 mm and the mean electron range of the beam hardened primary PDSA is 8.24 mm. In comparison, a 3 MeV primary monoenergetic dose spread array (MDSA) has a much smaller mean electron range of 4.81 mm. A radiotherapy x-ray beam computation method is introduced which involves a single superposition of the surface generated PDSA or beam hardened PDSA with a polyenergetic TERMA. The mean percentage difference between depth-dose curves obtained using super-position of surface and beam hardened PDSA is only 0.1%. The mean percentage difference from experimental data for these superposition curves is 2.8% down to 40 cm in a homogeneous phantom. The superposition process is shown to be forgiving to spectral differences when calculating the PDSA, but sensitive to the incident photon energy spectrum used to calculate the TERMA.
Neuroendocrine tumours (NETs) belong to a relatively rare class of neoplasms. Nonetheless, their prevalence has increased significantly during the last decades. Peptide receptor radionuclide therapy (PRRT) is a relatively new treatment approach for inoperable or metastasised NETs. The therapeutic effect is based on the binding of radiolabelled somatostatin analogue peptides with NETs' somatostatin receptors, resulting in internal irradiation of tumours. Pre-therapeutic patient-specific dosimetry is essential to ensure that a treatment course has high levels of safety and efficacy. This paper reviews the methods applied for PRRT dosimetry, as well as the dosimetric results presented in the literature. Focus is given on data concerning the therapeutic somatostatin analogue radiopeptides (111)In-[DTPA(0),D-Phe(1)]-octreotide ((111)In-DTPA-octreotide), (90)Y-[DOTA(0),Tyr(3)]-octreotide ((90)Y-DOTATOC) and (177)Lu-[DOTA(0),Tyr(3),Thr(8)]-octreotide ((177)Lu-DOTATATE). Following the Medical Internal Radiation Dose (MIRD) Committee formalism, dosimetric analysis demonstrates large interpatient variability in tumour and organ uptake, with kidneys and bone marrow being the critical organs. The results are dependent on the image acquisition and processing protocol, as well as the dosimetric imaging radiopharmaceutical.
Abstract-A method for speed control of Brushed DC (BDC) motors is presented. It is particularly applicable to motors with armatures of less than one cubic centimetre. Motors with very small armatures are difficult to control using the usual PulseWidth Modulation (PWM) approach, and are apt to overheat if so driven. The technique regulates speed via the back EMF but does not require current-discontinuous drive. Armature heating in small motors under PWM drive is explained and quantified. The method is verified through simulation and measurement. Control is improved and armature losses are minimised. The method can expect to find application in miniature mechatronic equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.