The reactions of metal clusters with small molecules often depend on cluster size. The selectivity of oxygen reactions with aluminum cluster anions can be well described within an electronic shell model; however, not all reactions are subject to the same fundamental constraints. We observed the size selectivity of aluminum cluster anion reactions with water, which can be attributed to the dissociative chemisorption of water at specific surface sites. The reactivity depends on geometric rather than electronic shell structure. Identical arrangements of multiple active sites in Al16-, Al17-, and Al18- result in the production of H2 from water.
It is shown that spin accommodation plays a determining role in the reactivity of aluminum based anion clusters with oxygen. Experimental reactivity studies on aluminum and aluminum-hydrogen clusters show variable reactivity in even electron systems and rapid etching in odd electron systems. The reactivity of even electron clusters is governed by a spin transfer to the singlet cluster through filling of the spin down antibonding orbitals on triplet oxygen. Theoretical investigations show that when the spin transfer cannot occur, the species is unreactive. When spin accommodation is possible, more subtle effects appear, such as the required spin excitation energy, which raises the total energy of the system, and the filling of the antibonding levels of the O2 molecule, which is stabilized by becoming an aluminum oxygen pi bond. This explanation is consistent with observed behavior in oxygen etching reactions with a variety of clusters including AlnHm-, Aln-, AlnIm-, and AlnC-. The proposed reaction mechanism lends a physical interpretation as to why the HOMO-LUMO gap successfully predicts oxygen etching behavior of the considered systems.
The reactivity of aluminum anion clusters with water was found to exhibit variations with size, with some clusters exhibiting negligible reactivity, others absorbing one or more water, while even others releasing H(2) with addition of multiple waters. (Roach, P.J., Woodward, W.H. et al. Science, 2009, 323, 492). Herein, we provide further details on the role of complementary active sites in the breaking of the O-H bond on the cluster. We examine the reactions of Al(n)(-) + H(2)O where n = 7-18, and show how the complementary active sites may be best identified. The clusters with active sites are found to be reactive, and clusters with barriers to reactivity have an absence of paired active sites. The role of charge in the reactivity is considered, which could account for the observed increase in reactivity at large sizes. The H(2) release in the reactivity of Al(17)(-) with multiple water molecules is also studied by comparing multiple reaction pathways, and the selective H(2) production is explained by the first water inducing a new active site. A mechanism for transferring hydroxyl groups on the surface of the cluster is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.