It is generally accepted that the reservoir hosts of cowpox virus are wild rodents, although direct evidence for this is lacking for much of the virus's geographic range. Here, through a combination of serology and PCR, we demonstrate conclusively that the main hosts in Great Britain are bank voles, wood mice and short-tailed field voles. However, we also suggest that wood mice may not be able to maintain infection alone, explaining the absence of cowpox from Ireland where voles are generally not found. Infection in wild rodents varies seasonally, and this variation probably underlies the marked seasonal incidence of infection in accidental hosts such as humans and domestic cats.
Climate influences the biogeography of bats, their access to food, timing of hibernation, reproduction and development, frequency and duration of torpor and rate of energy expenditure. Empirical data on the impact of climate change on bats are a cause for concern as current increases in global temperature are one fifth, or less, of those expected over the next century. We review observed impacts of climate change on bats and identify risk factors allowing species‐specific predictions. The impact on species is reviewed in relation to six aspects, namely foraging, roosting, reproduction, biogeography, extreme weather events and indirect effects of climate change. For some aspects of species' ecology, there are insufficient data available to make accurate assessment of impacts. We identify seven risk factors encompassing three broad aspects: biogeography – small range size, high latitude or high altitude range and a range occupying a geographic area likely to become water stressed; foraging niche – frugivory and species restricted to aerial hawking; dispersal ability – species with restricted dispersal behaviour. We use the European and north‐west African bats as a case study to assess the relative risk of climate change to individual species. Risk scores are compared with existing International Union for Conservation of Nature conservation assessments providing further insight into the conservation outlook for individual species. We provide a base for Chiroptera to be incorporated into future frameworks of risk assessment and identify areas that require further research.
While we can usually understand the impacts of invasive species on recipient communities, invasion biology lacks methodologies that are potentially more predictive. Such tools should ideally be straightforward and widely applicable. Here, we explore an approach that compares the functional responses (FRs) of invader and native amphipod crustaceans. Dikerogammarus villosus is a PontoCaspian amphipod currently invading Europe and poised to invade North America. Compared with other amphipods that it actively replaces in freshwaters, D. villosus exhibited significantly greater predation, consuming significantly more prey with a higher type II FR. This corroborates the known dramatic field impacts of D. villosus on invaded communities. In another species, FRs were nearly identical in invasive and native ranges. We thus propose that if FRs of other taxa and trophic groups follow such general patterns, this methodology has potential in predicting future invasive species impacts.
Camera traps are used to estimate densities or abundances using capture-recapture and, more recently, random encounter models (REMs). We deploy REMs to describe an invasive-native species replacement process, and to demonstrate their wider application beyond abundance estimation. The Irish hare Lepus timidus hibernicus is a high priority endemic of conservation concern. It is threatened by an expanding population of nonnative, European hares L. europaeus, an invasive species of global importance. Camera traps were deployed in thirteen 1 km squares, wherein the ratio of invader to native densities were corroborated by night-driven line transect distance sampling throughout the study area of 1652 km 2 . Spatial patterns of invasive and native densities between the invader's core and peripheral ranges, and native allopatry, were comparable between methods. Native densities in the peripheral range were comparable to those in native allopatry using REM, or marginally depressed using Distance Sampling. Numbers of the invader were substantially higher than the native in the core range, irrespective of method, with a 5:1 invader-to-native ratio indicating species replacement. We also describe a post hoc optimization protocol for REM which will inform subsequent (re-)surveys, allowing survey effort (camera hours) to be reduced by up to 57% without compromising the width of confidence intervals associated with density estimates. This approach will form the basis of a more cost-effective means of surveillance and monitoring for both the endemic and invasive species. The European hare undoubtedly represents a significant threat to the endemic Irish hare.
Male sex‐biased parasitism (SBP) occurs across a range of mammalian taxa and two contrasting sets of hypotheses have been suggested for its establishment. The first invokes body size per se and suggests that larger individuals are either a larger target for parasites, trade off growth at the expense of immunity or cope better with parasitism than smaller individuals. The second suggests a sex‐specific handicap whereby males have reduced immunocompetence compared to females due to the immunodepressive effects of testosterone. The current study investigated whether sex‐biased parasitism is driven by host ‘body size’ or ‘sex’ using a rodent–tick (Apodemus sylvaticus–Ixodes ricinus) system. Moreover, the presence or absence of large mammals at study sites were used to control the presence of immature ticks infesting wood mice, allowing the impacts of parasitism on host body mass and female reproduction to be assessed. As expected, male mice had greater tick loads than females and analyses suggested this sex‐bias was driven by body mass as opposed to sex. It is therefore likely that larger individuals are a larger target for parasites, trade off growth at the expense of immunity or adapt behavioural responses to parasitism based on their body size. Parasite load had no effect on host body mass or female reproductive output suggesting individuals may alter behaviour or life history strategies to compensate for costs incurred through parasitism. Overall, this study lends support to the ‘body size’ hypothesis for the formation of sex‐biased parasitism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.