abstract:The relative plasticity hypothesis predicts that alternative tactics are associated with changes in steroid hormone levels. In species with alternative male reproductive tactics, the highest androgen levels have usually been reported in dominant males. However, in sociable species, dominant males show amicable behaviors to gain access to females, which might conflict with high testosterone levels. We compared testosterone, corticosterone, and resting metabolic rate in male striped mice (Rhabdomys pumilio) following a conditional strategy with three different reproductive tactics: (i) philopatric group-living males, (ii) solitary-living roamers, (iii) dominant but sociable group-living territorial breeders. Philopatrics had the lowest testosterone but highest corticosterone levels, suggesting that they make the best of a bad job. Dominant territorial breeders had lower testosterone levels than roamers, which have a lower competitive status. Roamers had the highest testosterone levels, which might promote risky behavior, such as invading territories defended by territorial males. Roamers also had lower resting metabolic rates than either type of group-living males. Our results suggest that dominant males' testosterone levels reflect a trade-off between low testosterone amicable behavior and high testosterone dominance behavior.
BackgroundAccelerometers are powerful sensors in many bio-logging devices, and are increasingly allowing researchers to investigate the performance, behaviour, energy expenditure and even state, of free-living animals. Another sensor commonly used in animal-attached loggers is the magnetometer, which has been primarily used in dead-reckoning or inertial measurement tags, but little outside that. We examine the potential of magnetometers for helping elucidate the behaviour of animals in a manner analogous to, but very different from, accelerometers. The particular responses of magnetometers to movement means that there are instances when they can resolve behaviours that are not easily perceived using accelerometers.MethodsWe calibrated the tri-axial magnetometer to rotations in each axis of movement and constructed 3-dimensional plots to inspect these stylised movements. Using the tri-axial data of Daily Diary tags, attached to individuals of number of animal species as they perform different behaviours, we used these 3-d plots to develop a framework with which tri-axial magnetometry data can be examined and introduce metrics that should help quantify movement and behaviour.ResultsTri-axial magnetometry data reveal patterns in movement at various scales of rotation that are not always evident in acceleration data. Some of these patterns may be obscure until visualised in 3D space as tri-axial spherical plots (m-spheres). A tag-fitted animal that rotates in heading while adopting a constant body attitude produces a ring of data around the pole of the m-sphere that we define as its Normal Operational Plane (NOP). Data that do not lie on this ring are created by postural rotations of the animal as it pitches and/or rolls. Consequently, stereotyped behaviours appear as specific trajectories on the sphere (m-prints), reflecting conserved sequences of postural changes (and/or angular velocities), which result from the precise relationship between body attitude and heading. This novel approach shows promise for helping researchers to identify and quantify behaviours in terms of animal body posture, including heading.ConclusionMagnetometer-based techniques and metrics can enhance our capacity to identify and examine animal behaviour, either as a technique used alone, or one that is complementary to tri-axial accelerometry.Electronic supplementary materialThe online version of this article (doi:10.1186/s40462-017-0097-x) contains supplementary material, which is available to authorized users.
Summary1. Free-living animals make complex decisions associated with optimizing energy and nutrient intake. In environments where ambient temperatures fall below the thermoneutral zone, homeotherms must choose whether or not to forage, how long and what to forage for, and whether or not to perform activities that conserve energy. 2. Huddling in groups has long been thought of as a possible means of conserving energy. Laboratory studies have shown that at low ambient temperatures individuals in groups expend less energy than individuals by themselves. However, studies have yet to demonstrate that thermoregulatory savings can have an impact on the overall daily energy expenditure (DEE) of free-living animals. 3. Here we show that, in the laboratory, African Four-Striped Grass Mice ( Rhabdomys pumilio ) expend less energy per individual in large groups than smaller groups. We also show that when free-living groups were experimentally reduced to one-half of their original size, DEE and water turnover increased by 19% and 37%, respectively. 4. The magnitudes of the reduction in free-living DEE were comparable with calculated energy savings from the laboratory. One of the reasons why this species may sometimes occur in groups is that energetic benefits can be gained through huddling in habitats in which food and water are scarce.
Male sex‐biased parasitism (SBP) occurs across a range of mammalian taxa and two contrasting sets of hypotheses have been suggested for its establishment. The first invokes body size per se and suggests that larger individuals are either a larger target for parasites, trade off growth at the expense of immunity or cope better with parasitism than smaller individuals. The second suggests a sex‐specific handicap whereby males have reduced immunocompetence compared to females due to the immunodepressive effects of testosterone. The current study investigated whether sex‐biased parasitism is driven by host ‘body size’ or ‘sex’ using a rodent–tick (Apodemus sylvaticus–Ixodes ricinus) system. Moreover, the presence or absence of large mammals at study sites were used to control the presence of immature ticks infesting wood mice, allowing the impacts of parasitism on host body mass and female reproduction to be assessed. As expected, male mice had greater tick loads than females and analyses suggested this sex‐bias was driven by body mass as opposed to sex. It is therefore likely that larger individuals are a larger target for parasites, trade off growth at the expense of immunity or adapt behavioural responses to parasitism based on their body size. Parasite load had no effect on host body mass or female reproductive output suggesting individuals may alter behaviour or life history strategies to compensate for costs incurred through parasitism. Overall, this study lends support to the ‘body size’ hypothesis for the formation of sex‐biased parasitism.
Background:The popularity of tri-axial accelerometer data loggers to quantify animal activity through the analysis of signature traces is increasing. However, there is no consensus on how to process the large data sets that these devices generate when recording at the necessary high sample rates. In addition, there have been few attempts to validate accelerometer traces with specific behaviours in non-domesticated terrestrial mammals. We fitted a collar with a tri-axial accelerometer to a tame captive Eurasian badger (Meles meles). The animal was allowed to move freely in an outside enclosure and artificial sett whilst movements were recorded using a video camera. Data were analysed using custom-written software in terms of magnitude of movement, posture and periodicity using spectral analysis, a principal component analysis, the k-nearest neighbour algorithm and a decision tree to facilitate the automated classification of behaviours. Findings:We have demonstrated that various discrete behaviours (walking, trotting, snuffling and resting) can be differentiated using tri-axial accelerometer data. Classification accuracy ranged between 77.4% and 100% depending on the behaviour and classification method employed. Conclusions:These results are an important step in defining how accelerometer data code for the behaviour of free-ranging mammals. The classification methods outlined here have the potential to be used in the construction of a behavioural database and to generate behaviour-time budgets of hitherto unparalleled detail for wild animals. This would be invaluable for studies of nocturnal, subterranean or difficult-to-observe species that are particularly sensitive to human intrusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.