SignificanceIt has remained an unresolved question whether microorganisms recovered from the most arid environments on Earth are thriving under such extreme conditions or are just dead or dying vestiges of viable cells fortuitously deposited by atmospheric processes. Based on multiple lines of evidence, we show that indigenous microbial communities are present and temporally active even in the hyperarid soils of the Atacama Desert (Chile). Following extremely rare precipitation events in the driest parts of this desert, where rainfall often occurs only once per decade, we were able to detect episodic incidences of biological activity. Our findings expand the range of hyperarid environments temporarily habitable for terrestrial life, which by extension also applies to other planetary bodies like Mars.
We report Raman, infrared, and x-ray diffraction (XRD) measurements, along with ab initio calculations on formic acid (FA) under pressure up to 50 GPa. We find an infinite chain Pna2(1) structure to be a high-pressure phase at room temperature. Our data indicate the symmetrization and a partially covalent character of the intrachain hydrogen bonds above approximately 20 GPa. Raman spectra and XRD patterns indicate a loss of long-range order at pressures above 40 GPa, with a large hysteresis upon decompression. We attribute this behavior to a three-dimensional polymerization of FA.
The infrared response of coronene (C(24)H(12)) under pressure and temperature conditions up to 10 GPa and 300 °C is examined in situ using a diamond anvil cell and synchrotron-source Fourier transform infrared (FTIR) spectroscopy. Coronene is a polycyclic aromatic hydrocarbon that is present in the interstellar medium and meteorites which may have contributed to the Earth's primordial carbon budget. It appears to undergo a reversible phase transition between 2 and 3.2 GPa at ambient temperature; new intramolecular bonds in the region 840-880 cm(-1) result from compression. We document the shift of spectral features to higher wavenumbers with increasing pressure but find this change suppressed by increased temperature. By investigating the stability of coronene over a range of naturally occurring conditions found in a range of environments, we assess the survival of the molecule through various terrestrial and extraterrestrial processes. Coronene has previously been shown to survive atmospheric entry during Earth accretion; this can now be extended to include survival through geological processes such as subduction and silicate melting of the rock cycle, opening the possibility of extraterrestrial coronene predating terrestrial accretion existing on Earth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.