Intelligent systems are increasingly being deployed in medicine and healthcare, but there is a need for a robust and objective methodology for evaluating such systems. Potentially, receiver operating characteristic (ROC) analysis could form a basis for the objective evaluation of intelligent medical systems. However, it has several weaknesses when applied to the types of data used to evaluate intelligent medical systems. First, small data sets are often used, which are unsatisfactory with existing methods. Second, many existing ROC methods use parametric assumptions which may not always be valid for the test cases selected. Third, system evaluations are often more concerned with particular, clinically meaningful, points on the curve, rather than on global indexes such as the more commonly used area under the curve. A novel, robust and accurate method is proposed, derived from first principles, which calculates the probability density function (pdf) for each point on a ROC curve for any given sample size. Confidence intervals are produced as contours on the pdf. The theoretical work has been validated by Monte Carlo simulations. It has also been applied to two real-world examples of ROC analysis, taken from the literature (classification of mammograms and differential diagnosis of pancreatic diseases), to investigate the confidence surfaces produced for real cases, and to illustrate how analysis of system performance can be enhanced. We illustrate the impact of sample size on system performance from analysis of ROC pdf's and 95% confidence boundaries. This work establishes an important new method for generating pdf's, and provides an accurate and robust method of producing confidence intervals for ROC curves for the small sample sizes typical of intelligent medical systems. It is conjectured that, potentially, the method could be extended to determine risks associated with the deployment of intelligent medical systems in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.