Piezoelectric actuators (PEA) hold the most promise for precision positioning applications due to their capability of producing extremely small displacements down to 10 pm (1 pm = 10 -12 m) as well as their high stiffness and force output. The piezoelectric-driven stickslip (PDSS) actuator, working on the friction-inertia concept, has the capacity of accomplishing an unlimited range of motion. It also holds the promises of simple configuration and low cost.On the other hand, the PDSS actuator has a relatively low efficiency and low loading capability, which greatly limits its applications. The purpose of this research is to improve the performance of the PDSS actuators by employing specially-designed working surfaces.The working surfaces, referred as anisotropic friction (AF) surfaces in this study, can provide different friction forces depending on the direction of relative motion of the two surfaces, and are used in this research to accomplish the aforementioned purpose. To fabricate such surfaces, two nanostructure technologies are employed: hot filament chemical vapour deposition (HFCVD) and ion beam etching (IBE). The HFCVD is used to deposit diamond on silicon substrates; and the IBE is used to etch the diamond crystalloid with a certain angle with respect to the coating surface to obtain an unsymmetrical-triangle microstructure.iii A PDSS actuator prototype containing the AF surfaces was developed in this study to verify the function of the AF surfaces and characterize the performance of PDSS actuators. The designed surfaces were mounted on the prototype; and the improvement in performance was characterized by conducting a set of experiments with both the normal isotropic friction (IF) surfaces and the AF surfaces, respectively. The results illustrate that the PDSS actuator with the AF surface has a higher efficiency and improved loading capability compared to the one with the IF surfaces.A model was also developed to represent the displacement of the novel PDSS actuator.The dynamics of the PEA and the platform were approximated by using a second order dynamic system. The pre-sliding friction behaviour involved was investigated by modifying the LuGre
Force balancing is a very important issue in mechanism design and has only recently been introduced to the design of robotic mechanisms. In this paper, a force balancing method called adjusting kinematic parameters (AKP) for robotic mechanisms or real-time controllable (RTC) mechanisms is proposed, as opposed to force balancing methods, e.g., the counterweights (CW) method. Both the working principle of the AKP method and the design equation with which to construct a force balanced mechanism are described in detail. A particular implementation of the AKP method for the RTC mechanisms where two pivots on a link are adjustable is presented. A comparison of the two methods, namely the AKP method and the CW method, is made for two RTC mechanisms with different mass distribution. The joint forces and torques are calculated for the trajectory tracking of the RTC mechanisms. The result shows that the AKP method is consistently better than the CW method in terms of the reduction of the joint forces and the torques in the servomotors, and the smoothing of the fluctuation of the joint force.
In this paper, a new topology that is a symmetric five bar profile for displacement amplification is proposed, and a compliant mechanical amplifier (CMA) based on the new topology is designed to amplify the stroke of a piezoelectric actuator. The new CMA can convert the motion generated by a PZT actuator with a large amplification ratio (24.4) in a very compact size, and it has a high natural frequency (573 Hz) and no lateral displacement. First, three existing topologies of CMA are analyzed and evaluated, which results in the new topology of CMA. After that, the new CMA is designed with different flexure hinges. The finite element analysis for the CMA shows that the double-beam symmetric five bar structure using the corner-filleted hinges can provide the best performance in terms of the displacement amplification and natural frequencies. The designed CMA is clearly better than the CMA based on the topology of a double symmetric four bar profile. Finally, the design is fine-tuned by examining critical parameters for the proposed CMA in light of a large displacement amplification ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.