Primary cilia, solitary microtubule-based structures that grow from the centriole and extend into the extracellular space, have increasingly been implicated as sensors of a variety of biochemical and biophysical signals. Mutations in primary cilium-related genes have been linked to a number of rare developmental disorders as well as dysregulation of cell proliferation. We propose that primary cilia are also important in mechanically regulated bone formation in adults and that their malfunction could play a role in complex multi-factorial bone diseases, such as osteoporosis. In this study, we generated mice with an osteoblast- and osteocyte-specific knockout of Kif3a, a subunit of the kinesin II intraflagellar transport (IFT) protein; IFT is required for primary cilia formation, maintenance, and function. These Colα1(I) 2.3-Cre;Kif3afl/fl mice exhibited no obvious morphological skeletal abnormalities. Skeletally mature Colα1(I) 2.3-Cre;Kif3afl/fl and control mice were exposed to 3 consecutive days of cyclic axial ulna loading, which resulted in a significant increase in bone formation in both the conditional knockouts and controls. However, Colα1(I) 2.3-Cre;Kif3afl/fl mice did exhibit decreased formation of new bone in response to mechanical ulnar loading compared to control mice. These results suggest that primary cilia act as cellular mechanosensors in bone and that their function may be critical for the regulation of bone physiology due to mechanical loading in adults.
Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process. © 2010 American Society for Bone and Mineral Research.
The formation of the sensory organs and cells that make up the peripheral nervous system (PNS) relies on the activity of transcription factors encoded by proneural genes (PNGs). Although PNGs have been identified in the nervous systems of both vertebrates and invertebrates, the complexity of their interactions has complicated efforts to understand their function in the context of their underlying regulatory networks. To gain insight into the regulatory network of PNG activity in chordates, we investigated the roles played by PNG homologs in regulating PNS development of the invertebrate chordate Ciona intestinalis. We discovered that in Ciona, MyT1, Pou4, Atonal, and NeuroD-like are expressed in a sequential regulatory cascade in the developing epidermal sensory neurons (ESNs) of the PNS and act downstream of Notch signaling, which negatively regulates these genes and the number of ESNs along the tail midlines. Transgenic embryos mis-expressing any of these proneural genes in the epidermis produced ectopic midline ESNs. In transgenic embryos mis-expressing Pou4, and MyT1 to a lesser extent, numerous ESNs were produced outside of the embryonic midlines. In addition we found that the microRNA miR-124, which inhibits Notch signaling in ESNs, is activated downstream of all the proneural factors we tested, suggesting that these genes operate collectively in a regulatory network. Interestingly, these factors are encoded by the same genes that have recently been demonstrated to convert fibroblasts into neurons. Our findings suggest the ascidian PNS can serve as an in vivo model to study the underlying regulatory mechanisms that enable the conversion of cells into sensory neurons.
A healthy skeleton relies on bone's ability to respond to external mechanical forces. The molecular mechanisms by which bone cells sense and convert mechanical stimuli into biochemical signals, a process known as mechanotransduction, are unclear. Focal adhesions play a critical role in cell survival, migration and sensing physical force. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that controls focal adhesion dynamics and can mediate reparative bone formation in vivo and osteoblast mechanotransduction in vitro. Based on these data, we hypothesized that FAK plays a role in load-induced bone formation. To test this hypothesis, we performed in vitro fluid flow experiments and in vivo bone loading studies in FAK−/− clonal lines and conditional FAK knockout mice, respectively. FAK−/− osteoblasts showed an ablated prostaglandin E2 (PGE2) response to fluid flow shear. This effect was reversed with the re-expression of wild-type FAK. Re-expression of FAK containing site-specific mutations at Tyr-397 and Tyr-925 phosphorylation sites did not rescue the phenotype, suggesting that these sites are important in osteoblast mechanotransduction. Interestingly, mice in which FAK was conditionally deleted in osteoblasts and osteocytes did not exhibit altered load-induced periosteal bone formation. Together these data suggest that although FAK is important in mechanically-induced signaling in osteoblasts in vitro, it is not required for an adaptive response in vivo, possibly due to a compensatory mechanism that does not exist in the cell culture system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.