Sublethal ischemic preconditioning (IPC) is a powerful inducer of ischemic brain tolerance. However, its underlying mechanisms are still not well understood. In this study, we chose four different IPC paradigms, namely 5 min (5 min duration), 5×5 min (5 min duration, 2 episodes, 15-min interval), 5×5×5 min (5 min duration, 3 episodes, 15-min intervals), and 15 min (15 min duration), and demonstrated that three episodes of 5 min IPC activated autophagy to the greatest extent 24 h after IPC, as evidenced by Beclin expression and LC3-I/II conversion. Autophagic activation was mediated by the tuberous sclerosis type 1 (TSC1)-mTor signal pathway as IPC increased TSC1 but decreased mTor phosphorylation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and hematoxylin and eosin staining confirmed that IPC protected against cerebral ischemic/reperfusion (I/R) injury. Critically, 3-methyladenine, an inhibitor of autophagy, abolished the neuroprotection of IPC and, by contrast, rapamycin, an autophagy inducer, potentiated it. Cleaved caspase-3 expression, neurological scores, and infarct volume in different groups further confirmed the protection of IPC against I/R injury. Taken together, our data indicate that autophagy activation might underlie the protection of IPC against ischemic injury by inhibiting apoptosis.
ABSTRACT. Ginsenoside Rh2 (Rh2) is a ginseng derivative used in Chinese traditional medicine. We investigated whether Rh2 can help prevent Alzheimer's disease symptoms and examined underlying mechanisms. We injected Rh2 into tg2576 Alzheimer's disease model mice and looked for behavioral improvement and senile plaque reduction in brain slices. We measured amyloid precursor protein (APP) metabolism species changes, amyloid beta40 and 42 levels and β, γ secretase activity in primary hippocampal neurons. By living cell staining, we detected surface and endocytosed APP. We also measured cholesterol and lipid rafts in primary neurons. Rh2 treatment significantly improved learning and memory performance at 14 months of age; it also reduced brain senile plaques at this age. Based on in vitro experiments, we found that Rh2 treatment increased soluble APPα (sAPPα) levels, increased CTFα/β ratios, and reduced amyloid beta 40 3587©FUNPEC-RP www.funpecrp.com.br Genetics and Molecular Research 13 (2): 3586-3598 (2014) Ginsenoside Rh2 promotes nonamyloidgenic cleavage of APP and 42 concentrations. Surface APP levels dramatically increased. Based on living cell staining, we found that Rh2 inhibited APP endocytosis. Based on lipid removal and reload experiments, we found that Rh2 can modulate APP by reducing cholesterol and lipid raft levels. We concluded that Rh2 improves learning and memory function in Alzheimer's disease model mice, and that this improvement is accomplished by reducing amyloid beta secretion and APP endocytosis, which in turn is achieved by reducing cholesterol and lipid raft concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.