Polycrystalline thin films of copper indium diselenide and its alloys with gallium and sulphur (CIGS) have proven to be suitable for use as absorbers in high-efficiency solar cells. Record efficiency devices of 20% power conversion efficiency have been produced by co-evaporation of the elements under high vacuum. However, non-vacuum methods for absorber deposition promise significantly lower capital expenditure and reduced materials costs, and have been used to produce devices with efficiencies of up to 14%. Such efficiencies are already high enough for commercial up-scaling to be considered and several companies are now trying to develop products based on non-vacuum deposited CIGS absorbers. This article will review the wide range of non-vacuum techniques that have been used to deposit CIGS thin films, highlighting the state of the art and efforts towards commercialization.
High gradient accelerating structures using dielectric-lined circular waveguides have been developed for a number of years at Argonne National Laboratory. In this article, we first report the experimental results of high power rf testing on the quartz based Dielectric-Loaded Accelerating (DLA) structure carried out on Feb. 2006 at the Naval Research Laboratory. The motivation for this experiment is to test the multipactor effect on different materials under high power and high vacuum condition. Up to 12 MW pulsed rf went through the tube without breakdown. Multipactor appeared during the experiment but with different features compared to other materials like alumina. Photomultiplier Tube (PMT) measurements were introduced into the experiment for the first time to observe the light emission time and intensity. In the second part of this paper, ways to achieve higher gradient for DLA structures are proposed: 1) smaller ID and longitudinal gap free DLA structures to reduce multipactor and obtain higher gradient; 2) new coaxial type coupler to avoid dielectric gap and improve impedance matching; 3) double layered DLA structure to reduce rf loss and enhance shunt impedance as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.