Cellular function is well known to be influenced by the physical cues and architecture of their three dimensional (3D) microenvironment. As such, numerous synthetic and naturally-occurring biomaterials have been developed to provide such architectures to support the proliferation of mammalian cells in vitro and in vivo. In recent years, our group, and others, have shown that scaffolds derived from plants can be utilized for tissue engineering applications in biomedicine and in the burgeoning cultured meat industry. Such scaffolds are straightforward to prepare, allowing researchers to take advantage of their intrinsic 3D microarchitectures. During the 2020 SARS-CoV-2 pandemic many people around the world began to rediscover the joy of preparing bread at home and as a research group, our members participated in this trend. Having observed the high porosity of the crumb (the internal portion of the bread) we were inspired to investigate whether it might support the proliferation of mammalian cells in vitro. Here, we develop and validate a yeast-free “soda bread” that maintains its mechanical stability over two weeks in culture conditions. The scaffolding is highly porous, allowing the 3D proliferation of multiple cell types relevant to both biomedical tissue engineering and the development of novel future foods. Bread derived scaffolds are highly scalable and represent a surprising new alternative to synthetic or animal-derived scaffolds for addressing a diverse variety of tissue engineering challenges.
The dynamic form factor, S(Q, ce), of fcc 'He at high density is calculated, including the one-phonon, the two-phonon, and interference contributions, for comparison with the recent neutron-scattering measurements of Eckert et al. and of Thomlinson et al. The purpose is to test how well the standard self-consistent phonon (SCP) theory, which takes no account of short-range correlations in the atomic vibration, can describe a moderately anharmonic crystal such as fcc He. The SCP theory is found to provide a good overall description of the neutron scattering data including both the one-phonon and multiphonon character.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.