The THEMIS Fluxgate Magnetometer (FGM) measures the background magnetic field and its low frequency fluctuations (up to 64 Hz) in the near-Earth space. The FGM is capable of detecting variations of the magnetic field with amplitudes of 0.01 nT, and it is particularly designed to study abrupt reconfigurations of the Earth's magnetosphere during the substorm onset phase. The FGM uses an updated technology developed in Germany that digitizes the sensor signals directly and replaces the analog hardware by software. Use of the digital fluxgate technology results in lower mass of the instrument and improved robustness. The present paper gives a description of the FGM experimental design and the data products, the extended calibration tests made before spacecraft launch, and first results of its magnetic field measurements during the first half year in space. It is also shown that the FGM on board the five THEMIS spacecraft well meets and even exceeds the required conditions of the stability and the resolution for the magnetometer.
Magnetic reconnection is a fundamental physical process in plasmas whereby stored 40 magnetic energy is converted into heat and kinetic energy of charged particles. 41Reconnection occurs in many astrophysical plasma environments and in laboratory 42 plasmas. Using very high time resolution measurements, NASA's Magnetospheric 43 2 Multiscale Mission (MMS) has found direct evidence for electron demagnetization and 44 acceleration at sites along the sunward boundary of Earth's magnetosphere where the 45 interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) 46 observed the conversion of magnetic energy to particle energy, (ii) measured the electric 47 field and current, which together cause the dissipation of magnetic energy, and (iii) 48identified the electron population that carries the current as a result of demagnetization 49 and acceleration within the reconnection diffusion/dissipation region. 50 51 Introduction 52
The success of the Magnetospheric Multiscale mission depends on the accurate measurement of the magnetic field on all four spacecraft. To ensure this success, two independently designed and built fluxgate magnetometers were developed, avoiding single-point failures. The magnetometers were dubbed the digital fluxgate (DFG), which uses an ASIC implementation and was supplied by the Space Research Institute of the Austrian Academy of Sciences and the analogue magnetometer (AFG) with a more traditional circuit board design supplied by the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.