Incubation of human keratinocytes with nanomolar concentrations of Staphylococcus aureus alpha-toxin leads to irreversible depletion of cellular ATP. The toxin forms hexamers in the target cell membranes, and rapid transmembrane flux of K+, Na+, and 86Rb is observed. Unexpectedly, pores formed in keratinocytes through application of low but lethal doses of alpha-toxin appeared to be considerably smaller than those formed in erythrocyte membranes. They permitted neither rapid influx of Ca 2 or propidium iodide, nor efflux of carboxyfluorescein. Larger pores allowing flux of all three markers did form when the toxin was applied at high concentrations. Flux of monovalent ions and reduction in cellular ATP levels evoked by low toxin doses correlated temporally with a fall in oxygen consumption, which was interpreted to reflect breakdown of mitochondrial respiration. The lethal event could not be thwarted by manipulating the extracellular K+ or Ca21 concentrations. Realization that alpha-toxin may form very small pores in nucleated cells is important for future research on cellular toxin effects and membrane repair processes.
The effect of localized hyperthermia on the circulatory responses and on the oxygen and glucose supply has been evaluated in tissue-isolated rat tumors utilizing an in situ perfusion system. On the average, localized hyperthermia caused a significant increase in total tumor blood flow after raising of the mean tumor temperature from 37 degrees C to 39.5 degrees C. At higher temperatures (42 degrees C) total tumor blood flow decreased to a level somewhat below the flow during normothermia. However, there were great interindividual differences in the response of blood flow to temperature. The changes in blood flow were paralleled by variations of the O2-consumption and of the glucose uptake of the tumor tissue. The alteration of the oxygen and glucose supply seem to be predominantly mediated through changes of tumor blood flow with temperature. Tumor microcirculation appears to be improved at moderate hyperthermic temperatures (39 degrees C -40 degrees C) and deteriorated at higher temperatures. Whereas a vasodilation of tumor vessels seems to be a paramount factor for flow improvements, a reduction of red blood cell flexibility due to severe tissue acidosis, multiple microthromboses as well as occlusions of microvessels should be taken into consideration as factors for flow impairments at higher tumor temperatures.
(±)-Aeroplysinin-1, an optically active 1.2-dihydroarene-1.2-diol. was isolated from the marine sponges Verongia aerophoba (+-isomer) and lanthella ardis (--isomer). For the experiments presented we used the +-isomer from Verongia aerophoba. Here we describe the hitherto unknown biological and pharmacological property of this compound to display pronounced anticancer activity against L5178y mouse lymphoma cells (ED50: 0.5 μm). Friend erythroleukemia cells (ED50: 0.7μm) , human mamma carcinoma cells (ED50: 0.3μm) and human colon carcinoma cells (ED50: 3.0 μm) in vitro. Furthermore, aeroplysinin caused a preferential inhibition of [3H]thymidine (dThd) incorporation rates in L5178y mouse lymphoma cells if compared with murine spleen lymphocytes in vitro. At concentrations between 1.1 and 28.5 μm, the [3H]dThd incorporation rates in L5178y cells were suppressed to 28% -0% but only to 78% -18% in murine spleen lymphocytes. The same differential effect in vitro was found with the following epithelial cells: 14.70 μm of the compound were required to inhibit normal human fibroblasts to 50% , but only 2.9 μm in the assays with human malign keratinocytes or malignant melanoma cells to observe the same inhibitory effect. Moreover, aeroplysinin-1 displayed antileukemic activity in vivo using the L5178y cell/NMRI mouse system; administered at a dose of 50 mg/kg for five consecutive days, the T/C (% ) value was determined to be 338. Preliminary toxicology studies revealed an acute LD50 of 202 mg/kg and a subacute LD50 of 150 mg/kg. Aeroplysinin-1 is neither a direct mutagen nor a premutagen in the umu/Salmonella typhimurium test system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.