Similarity search is a popular technique for seismic signal processing, with template matching, matched filters and subspace detectors being utilized for a wide variety of tasks, including both signal detection and source discrimination. Traditionally, these techniques rely on the cross-correlation function as the basis for measuring similarity. Unfortunately, seismogram correlation is dominated by path effects, essentially requiring a distinct waveform template along each path of interest. To address this limitation, we propose a novel measure of seismogram similarity that is explicitly invariant to path. Using Earthscope's USArray experiment, a path-rich dataset of 207,291 regional seismograms across 8,452 unique events is constructed, and then employed via the batch-hard triplet loss function, to train a deep convolutional neural network which maps raw seismograms to a low dimensional embedding space, where nearness on the space corresponds to nearness of source function, regardless of path or recording instrumentation. This path-agnostic embedding space forms a new representation for seismograms, characterized by robust, source-specific features, which we show to be useful for performing both pairwise event association as well as templatebased source discrimination with a single template.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.