Abstract. The Charge and Mass Magnetospheric Ion Composition Experiment(CAMMICE) on board the Polar spacecraft observed 75 energetic particle events in 1996 while the satellite was at apogee. All of these events were associated with a decrease in the magnitude of the local magnetic field measured by the Magnetic Field Experiment (MFE) on Polar. These new events showed several unusual features: (1) They were detected in the dayside polar cusp near the apogee of Polar with about 79% of the total events in the afternoonside and 21% in the morningside; (2) an individual event could last for hours; (3) the measured helium ion had energies up to and many times in excess of 2.4 MeV; (4) the intensity of 1-200 KeV/e helium was anticorrelated with the magnitude of the local geomagnetic field but correlated with the turbulent magnetic energy density; (5) the events were associated with an enhancement of the low-frequency magnetic noise, the spectrum of which typically extends from a few hertz to a few hundreds of hertz as measured by the Plasma Wave Instrument (PWI) on Polar; and (6) a seasonal variation was found for the occurrence rate of the events with a maximum in September. These characterized a new phenomenon which we are calling cusp energetic particle (CEP) events. The observed high charge state of helium and oxygen ions in the CEP events indicates a solar source for these particles. Furthermore, the measured 0.52-1.15 MeV helium flux was proportional to the difference between the maximum and the minimum magnetic field in the event. A possible explanation is that the energetic helium ions are energized from lower energy helium by a local acceleration mechanism associated with the high-altitude dayside cusp. These observations represent a potential discovery of a major acceleration region of the magnetosphere.
Abstract. The classical pure radial diffusion mechanism appears not to fully explain the frequently observed rapid enhancement in the timescales of minutes to hours in the radiation belt electron fluxes in the Earth's magnetosphere. We here consider other physical mechanisms, such as energization mechanisms associated with substorm processes, to account for these sudden increases. A three-dimensional electron kinetic model is used to simulate the dynamics of the geomagnetically trapped population of radiation belt electrons during a substorm injection event.In the past this model has been extensively used to study dynamics of energetic ions in the ring current. This work, for the first time, constitutes the development of a combined convection and diffusion model to radiation belt electrons in the 0.04-4 MeV kinetic energy range. The Tsyganenko 89 geomagnetic field model is used to simulate the time-varying terrestrial magnetosphere during the growth phase elongation and the expansion phase contraction. We find that inductive electric field associated with the magnetic reconfiguration process is needed in order to transport substorm electrons into the trapped particle region of the magnetosphere. The maximum enhancement in energetic electron fluxes is found to be located around the geosynchronous orbit location (L = 6.6), with up to 2 orders of magnitude enhancement in the total fluxes (0.04-4 MeV). Although this enhancement in the inner magnetosphere is very sensitive to the temperature and, to a less extent, density of the source population in the plasma sheet, we suggest that the substorm-associated energization in the magnetotail and the subsequent adiabatic acceleration in the earthward region account for the enhanced MeV electrons (killer electrons) seen at the geosynchronous orbit during storms and substorms.
From region 1 to 2 to 3, the helium energy spectra softened. A distorted magnetic field with three local minima corresponding to the three He peak fluxes was also observed by POLAR. A possible explanation is that the energetic He ions were energized from lower energy helium by a local acceleration mechanism that preferred smaller rigidity ions in the high altitude polar cusp region.
The average quiet time structure of energetic radiation belt protons can be explained as an equilibrium balance among radial diffusive transport from a proton source located just within the first closed field lines, losses due to Coulomb collisions, and charge exchange with the ambient neutral hydrogen geocorona. The mode of transport is diffusion due to substorm‐associated fluctuations in the large‐scale electric and magnetic fields. Attention is restricted to equatorially mirroring protons, and comparison is made between theoretical predictions of proton energy spectra at L values between 2 and 6.6 and in situ radiation belt ion observation on board the satellites Explorer 45 and ATS 6, both orbiting close to the equatorial plane. Good agreement between theory and observation suggests that the dominant ion population in the energy range 100– 1000 keV in the inner magnetosphere is indeed a proton population. Beyond this interval the major ions may be different from protons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.