'Pairs Trading' is an investment strategy used by many Hedge Funds. Consider two similar stocks which trade at some spread. If the spread widens short the high stock and buy the low stock. As the spread narrows again to some equilibrium value, a profit results. This paper provides an analytical framework for such an investment strategy. We propose a mean-reverting Gaussian Markov chain model for the spread which is observed in Gaussian noise. Predictions from the calibrated model are then compared with subsequent observations of the spread to determine appropriate investment decisions. The methodology has potential applications to generating wealth from any quantities in financial markets which are observed to be out of equilibrium.Pairs trading, Hedge funds, Spreads,
Abstract-In this paper, we compute general smoothing dynamics for partially observed dynamical systems generating Poisson observations. We consider two model classes, each Markov modulated Poisson processes, whose stochastic intensities depend upon the state of an unobserved Markov process. In one model class, the hidden state process is a continuously-valued Itô process, which gives rise to a continuous sample-path stochastic intensity. In the other model class, the hidden state process is a continuous-time Markov chain, giving rise to a pure jump stochastic intensity. To compute filtered estimates of state process, we establish dynamics, whose solutions are unnormalized marginal probabilities; however, these dynamics include Lebesgue-Stieltjes stochastic integrals. By adapting the transformation techniques introduced by J. M. C. Clark, we compute filter dynamics which do not include these stochastic integrals. To construct smoothers, we exploit a duality between our forward and backward transformed dynamics and thereby completely avoid the technical complexities of backward evolving stochastic integral equations. The general smoother dynamics we present can readily be applied to specific smoothing algorithms, referred to in the literature as: Fixed point smoothing, fixed lag smoothing and fixed interval smoothing. It is shown that there is a clear motivation to compute smoothers via transformation techniques similar to those presented by J. M. C. Clark, that is, our smoothers are easily obtained without recourse to two sided stochastic integration. A computer simulation is included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.