Rhizosphere response was studied as a factor in competition among indigenous Rhizobium japonicum serogroups for the nodulation of soybeans under field conditions. R. japonicum serogroups 110, 123, and 138 were found to coexist in a Waukegan field soil where they were determined to be the major nodulating rhizobia in soybean nodules. Competitive relationships among the three serogroups in that soil and in rhizospheres were examined during two growing seasons with several host cultivars with and without inoculation and with a nonlegume. Enumeration of each of the three competitors was carried out on inner rhizosphere and nonrhizosphere soil by immunofluorescence with serogroup-specific fluorescent antibodies. Rhizobia present in early-and late-season nodules were identified by fluorescent antibody analysis. Populations of each serogroup increased gradually in host rhizospheres, not exceeding 106/g of rhizosphere soil during the first few weeks after planting, whereas numbers in fallow soil remained at initial levels
Inoculation of soybean (Glycine max L.) rarely increases seed yields in fields where this crop has been previously grown. The inability of the inoculum strain to persist in soil could be a factor in this poor response. The persistence of the inoculant strain Rhizobium japonicum USDA 110 was followed for 56 weeks in a field soil (Typic Haplaquoll) using a fluorescent antibody technique. Statistically significant increases in the population of R. japonicum strain USDA 110 in soil were observed for the first 7 weeks after inoculation. When USDA 110 was applied at 2 × 106 cells g−1 soil the population of this organism in soil reached 1 × 107 cells g−1 soil 1 week after inoculation; a value significantly higher than observed in other inoculation and fertilization treatments. The population observed for the uninoculated control varied nonsignificantly from 6 × 104 to 2.6 × 105 cells g−1 during both growing seasons. No significant differences due to inoculation were observed for seed yield, or total aboveground N in either year. Even though the soil population was increased significantly, inoculation of strain USDA 110 at high rates produced no significant alteration in strain distribution in the nodules of soybeans in either year. Rhizobium japonicum strain USDA 110 was observed mostly in doubly infected nodules with strain USDA 123 which may have minimized the effect of strain USDA 110 on N2 fixation and seed yield.
Ocean acidification (OA) is predicted to reduce reef coral calcification rates and threaten the long-term growth of coral reefs under climate change. Reduced coral growth at elevated pCO2 may be buffered by sufficiently high irradiances; however, the interactive effects of OA and irradiance on other fundamental aspects of coral physiology, such as the composition and energetics of coral biomass, remain largely unexplored. This study tested the effects of two light treatments (7.5 versus 15.7 mol photons m−2 d−1) at ambient or elevated pCO2 (435 versus 957 µatm) on calcification, photopigment and symbiont densities, biomass reserves (lipids, carbohydrates, proteins), and biomass energy content (kJ) of the reef coral Pocillopora acuta from Kāne‘ohe Bay, Hawai‘i. While pCO2 and light had no effect on either area- or biomass-normalized calcification, tissue lipids gdw−1 and kJ gdw−1 were reduced 15% and 14% at high pCO2, and carbohydrate content increased 15% under high light. The combination of high light and high pCO2 reduced protein biomass (per unit area) by approximately 20%. Thus, under ecologically relevant irradiances, P. acuta in Kāne‘ohe Bay does not exhibit OA-driven reductions in calcification reported for other corals; however, reductions in tissue lipids, energy content and protein biomass suggest OA induced an energetic deficit and compensatory catabolism of tissue biomass. The null effects of OA on calcification at two irradiances support a growing body of work concluding some reef corals may be able to employ compensatory physiological mechanisms that maintain present-day levels of calcification under OA. However, negative effects of OA on P. acuta biomass composition and energy content may impact the long-term performance and scope for growth of this species in a high pCO2 world.
Experiments are reported on helical plasma equilibrium and stability in the Scyllac toroidal θ-pinch sectors (120°) which have major radii of 2.375 and 4.0 m with coil arc lengths of 5.0 and 8.4 m, respectively. In these experiments the outward toroidal drift force was compensated by a combination of ℓ = 1 helical and ℓ = 0 bumpy fields which are generated by shaping the inner surface of the compression coil or by driven ℓ = 1 windings. Time-resolved measurements were made of the gross plasma-column motion, the plasma radius, the magnetic flux excluded by the plasma, the external magnetic field, the plasma density, the electron and ion temperatures, and the plasma β at axial locations of minimum and maximum plasma radius. These data are used to study the approach to the theoretically predicted toroidal equilibrium (including axial pressure equilibrium). The plasma column remained in stable equilibrium for 7 – 10 μs in the 8-m sector compared with 4 – 7 μs in the 5-m experiment, at which times the onset of a terminating m = 1, k ≈ 0 sideways motion occurred. The results show that the plasma achieved axial pressure equilibrium (nkT = const) in 4 – 6 μs, while maintaining equilibrium in the toroidal plane for 10 μs or longer. The measurements of the plasma radius, β and magnetic field in the various experiments have confirmed in detail the stable toroidal equilibrium observed in the streak photographs during the first 4-10 μs of the discharge. The observed toroidal equilibria of the high-β, θ-pinch plasma are in quantitative agreement with MHD sharp-boundary theory and confirm the theoretical scaling of the equilibrium field between the 5-m and the 8-m sector experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.