Biobased monomers derived from eugenol were copolymerized by emulsion polymerization to produce latexes for adhesive applications. Stable latexes containing ethoxy dihydroeugenyl methacrylate and ethoxy eugenyl methacrylate with high total solids content of 50 wt% were obtained and characterized. Latexes synthesis was carried out using a semi-batch process and latexes with particle diameters in the range of 159 -178 nm were successfully obtained. Glass transition temperature values of the resulting polymers ranged between 32 and 28°C.Furthermore, tack and peel measurements confirmed the possibility to use these latexes in adhesive applications.
Precious metals, in particular Pd, have a wide range of applications in industry. Due to their scarcity, precious metals have to be recycled, preferably with green and energy-saving recycling processes. In this article, palladium extraction from an aluminosilicate-supported catalyst, containing about 2 wt% (weight%) of Pd (100% PdO), with supercritical CO2 (scCO2) assisted by complexing polymers is described. Two polymers, p(FDA)SH homopolymer and p(FDA-co-DPPS) copolymer (FDA: 1,1,2,2-tetrahydroperfluorodecyl acrylate; DPPS: 4-(diphenylphosphino)styrene), were tested with regards to their ability to extract palladium. Both polymers showed relatively low extraction conversions of approximately 18% and 30%, respectively. However, the addition of piperidine as activator for p(FDA-co-DPPS) allowed for an increase in the extraction conversion of up to 60%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.