A surface plasmon resonance (SPR) based graphene biosensor is presented. It consists of a graphene sheet coated above a gold thin film, which has been proposed and experimentally fabricated recently [ChemPhysChem 11, 585 (2010)]. The biosensor uses attenuated total reflection (ATR) method to detect the refractive index change near the sensor surface, which is due to the adsorption of biomolecules. Our calculations show that the proposed graphene-on-gold SPR biosensor (with L graphene layers) is (1 + 0.025 L) x gamma (where gamma > 1) times more sensitive than the conventional gold thin film SPR biosensor. The improved sensitivity is due to increased adsorption of biomolecules on graphene (represented by the factor gamma) and the optical property of graphene.
Recent research in the rapidly emerging field of plasmonics has shown the potential to significantly enhance light trapping inside thin-film solar cells by using metallic nanoparticles. In this article it is demonstrated the plasmon enhancement of optical absorption in amorphous silicon solar cells by using silver nanoparticles. Based on the analysis of the higher-order surface plasmon modes, it is shown how spectral positions of the surface plasmons affect the plasmonic enhancement of thin-film solar cells. By using the predictive 3D modeling, we investigate the effect of the higher-order modes on that enhancement. Finally, we suggest how to maximize the light trapping and optical absorption in the thin-film cell by optimizing the nanoparticle array parameters, which in turn can be used to fine tune the corresponding surface plasmon modes.
This paper investigates the influence of resonant and nonresonant plasmonic nanostructures, such as arrays of silver and aluminum nanoparticles in the forward scattering configuration, on the optical absorption in a thin-film amorphous silicon solar cell. It is demonstrated that nonresonant coupling of the incident sunlight with aluminum nanoparticles results in higher optical absorption in the photoactive region than resonant coupling with silver nanoparticle arrays. In addition, aluminum nanoparticles are shown to maintain a net positive enhancement of the optical absorption in amorphous silicon, as compared to a negative effect by silver nanoparticles, when the nanoparticles are oxidized.
This paper explores geometry-sensitive scattering from plasmonic nanoparticles deposited on top of a thin-film amorphous silicon solar cell to enhance light trapping in the photo-active layer. Considering the nanoparticles as ideal spheroids, the broadband optical absorption by the silicon layer is analyzed and optimized with respect to the nanoparticle aspect ratio in both the cases of resonant (silver) and nonresonant (aluminum) plasmonic nanostructures. It is demonstrated how the coupling of sunlight with the semiconductor can be improved through tuning the nanoparticle shape in both the dipolar and multi-polar scattering regimes, as well as discussed how the native oxide shell formed on the nanospheroid surface after the prolonged action of air and moisture affects the light trapping in the active layer and changes the photocurrent generation by the solar cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.