The focus of this review is on the hierarchy of computational models for sandwich plates and shells, predictor-corrector procedures, and the sensitivity of the sandwich response to variations in the different geometric and material parameters. The literature reviewed is devoted to the following application areas: heat transfer problems; thermal and mechanical stresses (including boundary layer and edge stresses); free vibrations and damping; transient dynamic response; bifurcation buckling, local buckling, face-sheet wrinkling and core crimping; large deflection and postbuckling problems; effects of discontinuities (eg, cutouts and stiffeners), and geometric changes (eg, tapered thickness); damage and failure of sandwich structures; experimental studies; optimization and design studies. Over 800 relevant references are cited in this review, and another 559 references are included in a supplemental bibliography for completeness. Extensive numerical results are presented for thermally stressed sandwich panels with composite face sheets showing the effects of variation in their geometric and material parameters on the accuracy of the free vibration response, and the sensitivity coefficients predicted by eight different modeling approaches (based on two-dimensional theories). The standard of comparison is taken to be the analytic three-dimensional thermoelasticity solutions. Some future directions for research on the modeling of sandwich plates and shells are outlined.
A review is made of the different approaches used for modeling multilayered composite plates. Discussion focuses on different approaches for developing two-dimensional shear deformation theories; classification of two-dimensional theories based on introducing plausible displacement, strain and/or stress assumptions in the thickness direction; and first-order shear deformation theories based on linear displacement assumptions in the thickness coordinate. Extensive numerical results are presented showing the effects of variation in the lamination and geometric parameters of simply supported composite plates on the accuracy of the static and vibrational responses predicted by six different modeling approaches (based on two-dimensional shear deformation theories). The standard of comparison is taken to be the exact three-dimensional elasticity solutions. Some of the future directions for research on the modeling of multilayered composite plates are outlined.
A review is made of the different approaches used for modeling multilayered composite shells. Discussion focuses on different approaches for developing two-dimensional shear deformation theories; classification of two-dimensional theories based on introducing plausible displacement, strain and/or stress assumptions in the thickness direction; first-order shear deformation theories based on linear displacement assumptions in the thickness coordinate; and efficient computational strategies for anisotropic composite shells. Extensive numerical results are presented showing the effects of variation in the lamination and geometric parameters of simply supported composite cylinders on the accuracy of the static and vibrational responses predicted by eight different modeling approaches (based on two-dimensional shear deformation theories). The standard of comparison is taken to be the exact three-dimensional elasticity solutions. The quantities compared include both the gross response characteristics (eg, vibration frequencies and strain energy components); and detailed, through-the-thickness distributions of displacements, stresses, and strain energy densities. Some of the future directions for research on the modeling of multilayered composite shells are outlined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.