Focused helium and neon ion beam induced etching for advanced extreme ultraviolet lithography mask repair.
The controlled positioning of nanostructures with active molecular components is of importance throughout nanoscience and nanotechnology. We present a novel three-step method to produce nanostructures that are selectively decorated with functional molecules. We use fluorophores and nanoparticles to functionalize SiO features with defined shapes and with sizes ranging from micrometers to 25 nm. The method is called MACE-ID: molecular assembly controlled by electron-beam-induced deposition. In the first step, SiO nanostructures are written with focused electron-beam-induced deposition, a direct-writing technique. In the second step, the deposits are selectively silanized. In the final step, the silanes are functionalized with fluorescent dyes, polystyrene spheres, or gold nanoparticles. This recipe gives exciting new possibilities for combining the highly accurate control of top-down patterning (e-beam direct writing) with the rich variety of the bottom-up approach (self-assembly), leading to active or responsive surfaces. An important advantage of MACE-ID is that it can be used on substrates that already contain complex features, such as plasmonic structures, nanoantennas, and cavities.
One critical area for EUV lithography is the development of appropriate mask repair strategies. To this end, we have explored etching repair strategies for nickel absorber layers and focused electron beam induced deposition of ruthenium capping layers. Nickel has higher EUV absorption than the standard TaN absorber layer and thus thinner films and improved optical quality can be realized. A thin (2.5 nm) ruthenium film is commonly used as a protective capping layer on the Mo-Si EUV multi-layer mirror which mechanically and chemically protects the multi-layers during standard mask-making procedures. The gas field ion (GFIS) microscope was used to investigate helium and neon ion beam induced etching (IBIE) of nickel as a candidate technique for EUV lithography mask editing. No discernable nickel etching was observed for helium, however transmission electron microscopy (TEM) revealed subsurface damage to the underlying Mo-Si multilayers. Subsequently, neon beam induced etching at 30 keV was investigated and successfully removed the 50 nm nickel absorber film. TEM imaging also revealed subsurface damage in the underlying Mo-Si multilayer. Two damage regimes were apparent, namely: 1) beam induced mixing of the Mo-Si layers and 2) nanobubble formation. Monte Carlo simulations were performed and the observed damage regimes were correlated to: 1) the nuclear energy loss and 2) a critical implant concentration. Electron beam induced deposition (EBID) was explored to deposit ruthenium capping/protective layers. Several ruthenium precursors were screened and so far liquid bis(ethylcyclopentyldienyl)ruthenium(II) was successful. The purity of the as-deposited nanodeposits was estimated to be 10% Ru and 90% C. We demonstrate a new chemically assisted electron beam purification process to remove carbon by-products and show that high-fidelity nanoscale ruthenium repairs can be realized.
Tailored writing and specific positioning of molecules on nanostructures is a key step for creating functional materials and nano-optical devices, or interfaces for synthetic machines in various applications. We present a novel approach for the selective functionalization of patterned glass surfaces with functional probes of any nature. The presented strategy is optimized for imaging fluorophore labeled nanostructures for (single-molecule) fluorescence microscopy. The first step in the protocol is coating a glass surface, here a microscope cover slide, with a 60 nm thick diamond-like carbon film. Subsequently, the pattern is defined by either writing silicon oxide on the coating with a focused electron beam, or by etching the coating with a focused ion beam to expose the glass surface. Finally, the pattern is silanized and functionalized. We demonstrate the selective binding of organic fluorophores and imaging with high contrast, especially in total-internal-reflection mode. The presented approach is flexible and combines bottom-up assembly with high-resolution lithography on glass cover slides to precisely position and image functional molecules of any type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.