This paper concerns the analysis of five-layer corrugated paperboard subjected to a four-point bending test. The segment of paperboard was tested to determine the bending stiffness. The investigations were conducted experimentally and numerically. The non-damaging tests of bending were carried out in an elastic range of samples. The detailed layers of paperboard were modelled as an orthotropic material. The simulation of flexure was based on a finite element method using Ansys® software. Several material properties and thicknesses of papers in the samples were taken into account to analyse the influence on general stiffness. Two different discrete models based on two geometries of paperboard were considered in this study to validate the experimental stiffness. The present analysis shows the possibility of numerical modelling to achieve a good correlation with experimental results. Moreover, the results of numerical estimations indicate that modelling of the perfect structure gives a lower bending stiffness and some corrections of geometry should be implemented. The discrepancy in stiffness between both methods ranged from 3.04 to 32.88% depending on the analysed variant.
The article presents a new technique for analyzing phenomena occurring during the measurement of the strength properties of paper in the conditions of compression of the tested samples with forces acting in the paper plane. The technique is based on collecting data on the current distance of the clamps holding the tested sample and the force exerted on the sample using a universal testing machine and on the simultaneous recording of image sequence of the sample during the measurement. Next, the resulting images are subjected to processing and analysis, the purpose of which is to extract information about the shape of the sample edge in all phases of the measurement. Its advantage is the ability to determine the deflection arrow of the sample and describe its shape using the selected function given by the analytical parametric formula. It will be helpful in further research on the development of an analytical model describing the phenomena occurring during paper compression, and a method to determine the mechanism of paper destruction and the corresponding maximum force that destroys a paper sample.
The article presents the method of calculating the edge crush test (ECT) of honeycomb paperboard. Calculations were made on the basis of mechanical properties of paper raw materials used for the production of cellular paperboard and geometrical parameters describing cellular paperboard. The presented method allows ECT calculation of honeycomb paperboard in the main directions in the paperboard plane; i.e., machine direction (MD) and cross direction (CD). The proposed method was verified by comparing the results of calculations with the results of ECT measurements of paperboard with different geometrical parameters made of different fibrous materials.
This paper presents an experimental and numerical analysis using the finite element method (FEM) of the bending of honeycomb-core panel. Segments of honeycomb paperboard of several thicknesses were subjected to four-point flexure tests to determine their bending stiffness and maximum load. Several mechanical properties of orthotropic materials were taken into account to account for the experimental results. The numerical analysis of the damage prediction was conducted by using well-known failure criteria such as maximum stress, maximum strain and Tsai-Wu. The present study revealed how to model the honeycomb panel to obtain curves close to experimental ones. This approach can be useful for modelling more complex structures made of honeycomb paperboard. Moreover, thanks to the use of variously shaped cells in numerical models, i.e., the shape of a regular hexagon and models with a real shape of the core cell, results of the calculation were comparable with the results of the measurements. It turned out that the increase of maximum loads and rise in stiffness for studied samples were almost either linearly proportional or quadratically proportional as a function of the panel thickness, respectively. On the basis of failure criteria, slightly lower maximum loads were attained in a comparison to empiric maximum loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.