In this paper, I briefly review some comparative data that provide an empirical basis for research on the evolution of music making in humans. First, a brief comparison of music and language leads to discussion of design features of music, suggesting a deep connection between the biology of music and language. I then selectively review data on animal "music." Examining sound production in animals, we find examples of repeated convergent evolution or analogy (the evolution of vocal learning of complex songs in birds, whales, and seals). A fascinating but overlooked potential homology to instrumental music is provided by manual percussion in African apes. Such comparative behavioral data, combined with neuroscientific and developmental data, provide an important starting point for any hypothesis about how or why human music evolved. Regarding these functional and phylogenetic questions, I discuss some previously proposed functions of music, including Pinker's "cheesecake" hypothesis; Darwin's and others' sexual selection model; Dunbar's group "grooming" hypothesis; and Trehub's caregiving model. I conclude that only the last hypothesis receives strong support from currently available data. I end with a brief synopsis of Darwin's model of a songlike musical "protolanguage," concluding that Darwin's model is consistent with much of the available evidence concerning the evolution of both music and language. There is a rich future for empirical investigations of the evolution of music, both in investigations of individual differences among humans, and in interspecific investigations of musical abilities in other animals, especially those of our ape cousins, about which we know little.
Although the mammalian larynx exhibits little structural variation compared to sound-producing organs in other taxa (birds or insects), there are some morphological features which could lead to significant differences in acoustic functioning, such as air sacs and vocal membranes. The vocal membrane (or "vocal lip") is a thin upward extension of the vocal fold that is present in many bat and primate species. The vocal membrane was modeled as an additional geometrical element in a two-mass model of the larynx. It was found that vocal membranes of an optimal angle and length can substantially lower the subglottal pressure at which phonation is supported, thus increasing vocal efficiency, and that this effect is most pronounced at high frequencies. The implications of this finding are discussed for animals such as bats and primates which are able to produce loud, high-pitched calls. Modeling efforts such as this provide guidance for future empirical investigations of vocal membrane structure and function, can provide insight into the mechanisms of animal communication, and could potentially lead to better understanding of human clinical disorders such as sulcus vocalis.
Why do humans make music? Theories of the evolution of musicality have focused mainly on the value of music for specific adaptive contexts such as mate selection, parental care, coalition signaling, and group cohesion. Synthesizing and extending previous proposals, we argue that social bonding is an overarching function that unifies all of these theories, and that musicality enabled social bonding at larger scales than grooming and other bonding mechanisms available in ancestral primate societies. We combine cross-disciplinary evidence from archaeology, anthropology, biology, musicology, psychology, and neuroscience into a unified framework that accounts for the biological and cultural evolution of music. We argue that the evolution of music’s social bonding functions involves gene-culture coevolution, through which proto-musical behaviors that initially arose and spread as cultural inventions had feedback effects on biological evolution due to their impact on social bonding. We emphasize the deep links between production, perception, prediction, and social reward arising from repetition, synchronization, and harmonization of rhythms and pitches, and summarize empirical evidence for these links at the levels of brain networks, physiological mechanisms, and behaviors across cultures and across species. Finally, we address potential criticisms and make testable predictions for future research, including neurobiological bases of musicality and relationships between human music, language, animal song, and other domains. The music and social bonding (MSB) hypothesis provides the most comprehensive theory to date of the biological and cultural evolution of music.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.